Selective laser melting (SLM) is an additive manufacturing technique in which metal products are manufactured in a layer-by-layer manner. One of the main advantages of SLM is the large geometrical design freedom. Because of the layered build, parts with inner cavities can be produced. However, complex structures, such as downfacing areas, influence the process behavior significantly. The downfacing areas can be either horizontal or inclined structures. The first part of this work describes the process parameter optimization for noncomplex, upfacing structures to obtain relative densities above 99%. In the second part of this research, parameters are optimized for downfacing areas, both horizontal and inclined. The experimental results are compared to simulations of a thermal model, which calculates the melt pool dimensions based on the material properties (such as thermal conductivity) and process parameters (such as laser power and scan speed). The simulations show a great similarity between the thermal model and the actual process.

References

References
1.
Edwards
,
P.
,
O’Connor
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
2.
Mahamood
,
R.
,
Akinlabi
,
E.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Characterizing the Effect of Laser Power Density on Microstructure, Microhardness, and Surface Finish of Laser Deposited Titanium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
064502
.10.1115/1.4025737
3.
Kempen
,
K.
,
Thijs
,
L.
,
Yasa
,
E.
,
Badrossamay
,
M.
,
Verheecke
,
W.
, and
Kruth
,
J.-P.
,
2011
, “
Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg
,”
Solid Freeform Fabrication Symposium
,
22
(
2011
), pp.
484
495
.
4.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2012
, “
Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting
,”
Phys. Procedia
,
39
, pp.
439
446
.10.1016/j.phpro.2012.10.059
5.
Clijsters
,
S.
,
Craeghs
,
T.
, and
Kruth
,
J.-P.
,
2012
, “
A Priori Parameter Adjustment for SLM Process Optimization
,” Innovative Developments in Virtual and Physical Prototyping, Taylor & Francis Group, New York, pp.
553
560
.10.1201/b11341-89
6.
Wang
,
D.
,
Yang
,
Y.
,
Yi
,
Z.
, and
Su
,
X.
,
2012
, “
Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process
,”
Int. J. Adv. Manuf. Technol.
65
(
9–12
), pp.
1471
1484
.10.1007/s00170-012-4271-4
7.
Mumtaz
,
K. A.
,
Erasenthiran
,
P.
, and
Hopkinson
,
N.
,
2008
, “
High Density Selective Laser Melting of Waspaloy®
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
77
87
.10.1016/j.jmatprotec.2007.04.117
8.
Buchbinder
,
D.
,
Schleifenbaum
,
H.
,
Heidrich
,
S.
,
Meiners
,
W.
, and
Bültmann
,
J.
,
2011
, “
High Power Selective Laser Melting (HP SLM) of Aluminum Parts
,”
Phys. Procedia
,
12
(
2011
), pp.
271
278
.10.1016/j.phpro.2011.03.035
9.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
, pp.
177
185
.10.1016/j.jallcom.2012.07.022
10.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting With Evaporation
,”
Acta Mater.
57
(
20
), pp.
6006
6012
.10.1016/j.actamat.2009.08.027
12.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
.10.1115/1.4026524
You do not currently have access to this content.