Electron beam freeform fabrication (EBF3), a metallic layer-additive manufacturing process, uses a high-power electron beam in conjunction with a metal feed wire to create a molten pool on a substrate, which on solidification produces a component of the desired configuration made of sequentially deposited layers. During the build-up of each solidified layer, the substrate is translated with respect to the electron beam and the feed wire. EBF3 products are similar to conventional cast products with regard to the as-deposited (AD) microstructure and typical mechanical properties. Inconel 718 (IN 718), a high-temperature superalloy with attractive mechanical and oxidation properties well suited for aerospace applications, is typically used in the wrought form. The present study examines the evolution of microstructure, crystallographic texture, and mechanical properties of a block of IN 718 fabricated via the EBF3 process. Specimens extracted out of this block, both in the AD and in a subsequently heat treated (HT) condition, were subjected to (1) microstructural characterization using scanning electron microscopy (SEM); (2) in-plane elastic modulus, tensile strength, and microhardness evaluations; and (3) crystallographic texture characterization using electron backscatter diffraction (EBSD). Salient conclusions stemming from this study are: (1) mechanical properties of the EBF3-processed IN 718 block are strongly affected by texture as evidenced by their dependence on orientation relative to the EBF3 fabrication direction, with the AD EBF3 properties generally being significantly reduced compared to wrought IN 718; (2) significant improvement in both strength and modulus of the EBF3 product to levels nearly equal to those for wrought IN 718 may be achieved through heat treatment.

References

References
1.
Taminger
,
K.
, and
Hafley
,
R.
,
2006
,
Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing
, NASA Technical Memorandum Paper No. TM-2006-214284.
2.
Taminger
,
K.
, and
Hafley
,
R.
,
2003
, “
Electron Beam Freeform Fabrication: A Rapid Metal Deposition Process
,”
3rd Annual Automotive Composites Conference
,
Troy, MI
, Sept. 9–10, Society of Plastics Engineers, Troy, MI.
3.
Brown
,
W. F.
, and
Setlak
,
S.
, eds.,
2005
,
Aerospace Structural Metals Handbook
, CINDAS/USAF CRDA Handbook Operation,
Purdue University
,
West Lafayette, IN
.
4.
Bird
,
R. K.
, and
Hibberd
,
J.
,
2009
, “
Tensile Properties and Microstructure of Inconel 718 Fabricated With Electron Beam Freeform Fabrication (EBF3)
,” NASA Technical Memorandum Paper No. TM-2009-215929.
5.
Reed
,
R.
,
2006
, The Superalloys: Fundamentals and Applications,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511541285
6.
Bi
,
G.
,
Sun
,
C.-N.
,
Chen
,
H.-C.
,
Ng
,
F. L.
, and
Ma
,
C. C. K.
,
2014
, “
Microstructure and Tensile Properties of Superalloy IN100 Fabricated by Micro-Laser Aided Additive Manufacturing
,”
Mater. Des.
,
60
, pp.
401
408
.10.1016/j.matdes.2014.04.020
7.
Antonysamy
,
A. A.
,
Meyer
,
J.
, and
Prangnell
,
P. B.
,
2013
, “
Effect of Build Geometry on the β-Grain Structure and Texture in Additive Manufacture of Ti6Al4V by Selective Electron Beam Melting
,”
Mater. Charact.
,
84
, pp.
153
168
.10.1016/j.matchar.2013.07.012
8.
Thijs
,
L.
,
Montero Sistiaga
,
M. L.
,
Wauthle
,
R.
,
Xie
,
Q.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2013
, “
Strong Morphological and Crystallographic Texture and Resulting Yield Strength Anisotropy in Selective Laser Melted Tantalum
,”
Acta Mater.
,
61
(
12
), pp.
4657
4668
.10.1016/j.actamat.2013.04.036
9.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
10.
Designation E8: Tension Testing of Metallic Materials
,
2010
,
Annual Book of ASTM Standards
, Vol. 3.01,
American Society for Testing and Materials
,
West Conshohocken, PA
.
11.
Designation E111-97
: Standard Test Methods for Tension Testing of Metallic Materials,
2010
,
Annual Book of ASTM Standards
, Vol. 3.01,
American Society for Testing and Materials
,
West Conshohocken, PA
.
12.
Vander Voort
,
G. F.
,
1984
,
Metallography, Principles and Practice
,
McGraw-Hill
,
New York
.
13.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J Inst. Met.
,
62
, pp.
307
324
.
14.
Bunge
,
H. J.
,
Kiewel
,
R.
,
Reinert
,
T.
, and
Fritsche
,
L.
,
2000
, “
Elastic Properties of Polycrystals—Influence of Texture and Stereology
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
29
66
.10.1016/S0022-5096(99)00020-4
15.
Bishop
,
J. F. W.
, and
Hill
,
R.
,
1951
, “
A Theory of the Plastic Distortion of a Polycrystalline Aggregate Under Combined Stresses
,”
Phil. Mag.
,
42
(
327
), pp.
414
427
.
16.
Voigt
,
W.
,
1910
,
Lehrbuch der Kristallphysik
,
Teubner
,
Berlin
.
17.
Reuss
,
A.
,
1926
, “
Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingungen für Einkristalle
,”
Z. Angew. Math. Mech.
,
9
(1)
, pp.
49
58
.10.1002/zamm.19290090104
18.
Holden
,
T. M.
,
Holt
,
R. A.
, and
Clarke
,
A. P.
,
1998
, “
Intergranular Strains in Inconel-600 and the Impact on Interpreting Stress Fields in Bent Steam-Generator Tubing
,”
Mater. Sci. Eng. A
,
246
(
1–2
), pp.
180
198
.10.1016/S0921-5093(97)00732-6
19.
Dupond
,
O.
,
Feuilly
,
N.
,
Chassignole
,
B.
,
Fouquet
,
T.
,
Moysan
,
J.
, and
Corneloup
,
G.
,
2011
, “
Relation Between Ultrasonic Scattering and Microstructure of Polycrystalline Materials
,”
J. Phys.
,
269
(
1
), p.
012014
.10.1088/1742-6596/269/1/012010
20.
Ruff
,
P. E.
,
1986
, “
Effect of Manufacturing Processes on Structural Allowables—Phase I
,” Air Force Wright Aeronautical Laboratories, Technical Report No. AFWAL-TR-85-4128.
21.
U.S. Department of Defense
,
1999
,
Military Handbook—MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures
,
Washington, DC
.
22.
Doherty
,
R. D.
,
Hughes
,
D. A.
,
Humphreys
,
F. J.
,
Jonas
,
J. J.
,
Jensen
,
D. J.
,
Kassner
,
M. E.
,
King
,
W. E.
,
McNelley
,
T. R.
,
McQueen
,
H. J.
, and
Rollett
,
A. D.
,
1997
, “
Current Issues in Recrystallization: A Review
,”
Mater. Sci. Eng. A
,
238
(
2
), pp.
219
274
.10.1016/S0921-5093(97)00424-3
You do not currently have access to this content.