Selective laser melting (SLM) is widely used in making three-dimensional functional parts layer by layer. Temperature magnitude and history during SLM directly determine the molten pool dimensions and surface integrity. However, due to the transient nature and small size of the molten pool, the temperature gradient and the molten pool size are challenging to measure and control. A three-dimensional finite element (FE) simulation model has been developed to simulate multilayer deposition of Ti-6Al-4 V in SLM. A physics-based layer buildup approach coupled with a surface moving heat flux was incorporated into the modeling process. The melting pool shape and dimensions were predicted and experimentally validated. Temperature gradient and thermal history in the multilayer buildup process was also obtained. Furthermore, the influences of process parameters and materials on the melting process were evaluated.

References

References
1.
Waterman
,
N. A.
, and
Dickens
,
P.
,
1994
, “
Rapid Product Development in the USA, Europe and Japan
,”
World Class Des. Manuf.
,
1
(
3
), pp.
27
36
.10.1108/09642369210056629
2.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann. –Manuf. Technol.
,
52
(
2
), pp.
589
609
.10.1016/S0007-8506(07)60206-6
3.
Guo
,
N.
, and
Leu
,
M.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.10.1007/s11465-013-0248-8
4.
Vandenbroucke
,
B.
, and
Kruth
,
J.
,
2007
, “
Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts
,”
Rapid Prototyping J.
,
13
(
4
), pp.
196
203
.10.1108/13552540710776142
5.
Clare
,
A.
,
Chalker
,
P.
,
Davies
,
S.
,
Sutcliffe
,
C.
, and
Tsopanos
,
S.
,
2008
, “
Selective Laser Melting of High Aspect Ratio 3D Nickel–Titanium Structures Two Way Trained for MEMS Applications
,”
Int. J. Mech. Mater. Des.
,
4
(
2
), pp.
181
187
.10.1007/s10999-007-9032-4
6.
Hollander
,
D. A.
,
von Walter
,
M.
,
Wirtz
,
T.
,
Sellei
,
R.
,
Schmidt-Rohlfing
,
B.
,
Paar
,
O.
, and
Erli
,
H.
,
2006
, “
Structural, Mechanical and in Vitro Characterization of Individually Structured Ti–6Al–4V Produced by Direct Laser Forming
,”
Biomaterials
,
27
(
7
), pp.
955
963
.10.1016/j.biomaterials.2005.07.041
7.
Rochus
,
P.
,
Plesseria
,
J.-Y.
,
Van Elsen
,
M.
,
Kruth
,
J.-P.
,
Carrus
,
R.
, and
Dormal
,
T.
,
2007
, “
New Applications of Rapid Prototyping and Rapid Manufacturing (RP/RM) Technologies for Space Instrumentation
,”
Acta Astronaut.
,
61
(
1–6
), pp.
352
359
.10.1016/j.actaastro.2007.01.004
8.
Wong
,
M.
,
Tsopanos
,
S.
,
Sutcliffe
,
C.
, and
Owen
,
L.
,
2007
, “
Selective Laser Melting of Heat Transfer Devices
,”
Rapid Prototyping J.
,
13
(
5
), pp.
291
297
.10.1108/13552540710824797
9.
Vasinonta
,
A.
,
Beuth
,
J. L.
, and
Griffith
,
M.
,
2007
, “
Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
101
109
.10.1115/1.2335852
10.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
11.
Tsopanos
,
S.
,
Mines
,
R.
,
McKown
,
S.
,
Shen
,
Y.
,
Cantwell
,
W.
,
Brooks
,
W.
, and
Sutcliffe
,
C.
,
2010
, “
The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Microlattice Structures
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041011
.10.1115/1.4001743
12.
Kruth
,
J.-P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. –Manuf. Technol.
,
56
(
2
), pp.
730
759
.10.1016/j.cirp.2007.10.004
13.
Yadroitsev
,
I.
,
Gusarov
,
A.
,
Yadroitsava
,
I.
, and
Smurov
,
I.
,
2010
, “
Single Track Formation in Selective Laser Melting of Metal Powders
,”
J. Mater. Process. Technol.
,
210
(
12
), pp.
1624
1631
.10.1016/j.jmatprotec.2010.05.010
14.
Tolochko
,
N. K.
,
Khlopkov
,
Y. V.
,
Mozzharov
,
S. E.
,
Ignatiev
,
M. B.
,
Laoui
,
T.
, and
Titov
,
V. I.
,
2000
, “
Absorptance of Powder Materials Suitable for Laser Sintering
,”
Rapid Prototyping J.
,
6
(
3
), pp.
155
161
.10.1108/13552540010337029
15.
Gusarov
,
A.
, and
Kovalev
,
E.
,
2009
, “
Model of Thermal Conductivity in Powder Beds
,”
Phys. Rev. B
,
80
(
2
), p.
024202
.10.1103/PhysRevB.80.024202
16.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J. V.
, and
Kruth
,
J.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
17.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part I: Online Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011010
.10.1115/1.4000882
18.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.10.1016/j.ijmachtools.2009.07.004
19.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.10.1016/j.jmatprotec.2008.02.040
20.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des.
,
52
(
0
), pp.
638
647
.10.1016/j.matdes.2013.05.070
21.
Patil
,
R. B.
, and
Yadava
,
V.
,
2007
, “
Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1069
1080
.10.1016/j.ijmachtools.2006.09.025
22.
Morsbach
,
C.
,
Höges
,
S.
, and
Meiners
,
W.
,
2011
, “
Modeling the Selective Laser Melting of Polylactide Composite Materials
,”
J. Laser Appl.
,
23
(
1
), p.
012005
.10.2351/1.3538944
23.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
.10.1007/s10765-005-0001-6
24.
Ding
,
J.
,
Colegrove
,
P.
,
Mehnen
,
J.
,
Ganguly
,
S.
,
Sequeira Almeida
,
P. M.
,
Wang
,
F.
, and
Williams
,
S.
,
2011
, “
Thermo-Mechanical Analysis of Wire and Arc Additive Layer Manufacturing Process on Large Multi-Layer Parts
,”
Comput. Mater. Sci.
,
50
(
12
), pp.
3315
3322
.10.1016/j.commatsci.2011.05.020
25.
Dai
,
K.
, and
Shaw
,
L.
,
2004
, “
Thermal and Mechanical Finite Element Modeling of Laser Forming From Metal and Ceramic Powders
,”
Acta Mater.
,
52
(
1
), pp.
69
80
.10.1016/j.actamat.2003.08.028
26.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting With Evaporation
,”
Acta Mater.
,
57
(
20
), pp.
6006
6012
.10.1016/j.actamat.2009.08.027
27.
Boyer
,
R.
, and
Collings
,
E.
,
1993
,
Materials Properties Handbook: Titanium Alloys
, ASM International, Materials Park, OH.
28.
Kruth
,
J. P.
,
Froyen
,
L.
,
Van Vaerenbergh
,
J.
,
Mercelis
,
P.
,
Rombouts
,
M.
, and
Lauwers
,
B.
,
2004
, “
Selective Laser Melting of Iron-Based Powder
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
616
622
.10.1016/j.jmatprotec.2003.11.051
29.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting® of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.10.1115/1.4025746
30.
Dai
,
K.
, and
Shaw
,
L.
,
2002
, “
Distortion Minimization of Laser-Processed Components Through Control of Laser Scanning Patterns
,”
Rapid Prototyping Journal
,
8
(
5
), pp.
270
276
.10.1108/13552540210451732
You do not currently have access to this content.