Today, the use of material extrusion processes, like fused deposition modeling (FDM), in aerospace, biomedical science, and other industries, is gaining popularity because of the access to production-grade thermoplastic polymer materials. This paper focuses on how modifying process parameters such as build orientation, raster angle (RA), contour width (CW), raster width (RW), and raster-to-raster air gap (RRAG) can improve ultimate tensile strength (UTS), Young's modulus, and tensile strain. This was assessed using three methods: default, Insight revision, and visual feedback. On average, parameter modification through the visual feedback method improved UTS in all orientations, 16% in XYZ, 7% in XZY, and 22% in ZXY.
Issue Section:
Research Papers
References
1.
ASTM,
2012
, Standard Terminology for Additive Manufacturing Technologies
, ASTM International
, West Conshohocken, PA.2.
Stucker
, B.
, 2012
, “Additive Manufacturing Technologies: Technology Introduction and Business Implications
,” Frontiers of Engineering: Reports on Leading-Edge Engineering From the 2011 Symposium
, National Academies Press, Washington, DC
, Sept. 19–21, pp. 5
–14
.3.
Gibson
, I.
, Rosen
, D. W.
, and Stucker
, B.
, 2010
, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
, Springer
, New York
.4.
Sun
, Q.
, Rizvi
, G. M.
, Bellehumeur
, C. T.
, and Gu
, P.
, 2008
, “Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,” Rapid Prototyping J.
, 14
(2
), pp. 72
–80
.10.1108/135525408108620285.
Swanson
, W. J.
, Turley
, P. W.
, Leavitt
, P. J.
, Karwoski
, P. J.
, LaBossiere
, E.
, and Skubic
, R. L.
, 2004
, “High Temperature Modeling Apparatus
,” U.S. Patent No. US 6,722,872 B1.6.
ASTM,
2011
, “Standard Terminology for Additive Manufacturing-Coordinate Systems and Test Methodologies
,” ASTM International, West Conshohocken, PA.7.
Perez
, M.
, Block
, M.
, Espalin
, D.
, Winker
, R.
, Hoppe
, T.
, Medina
, F.
, and Wicker
, R.
, 2012
, “Sterilization of FDM-Manufactured Parts
,” Proceedings of the 2012 Annual International Solid Freeform Fabrication Symposium
, Austin, TX
, Aug. 6–8, pp. 285–296.8.
Zein
, I.
, Dietmar
, W. H.
, Tan
, K. C.
, and Teoh
, S. H.
, 2002
, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications
,” Biomaterials
, 23
(4
), pp. 1169
–1185
.10.1016/S0142-9612(01)00232-09.
Espalin
, D.
, Arcaute
, K.
, Rodriguez
, D.
, Medina
, F.
, Posner
, M.
, and Wicker
, R.
, 2010
, “Fused Deposition Modeling of Patient-Specific Polymethylmethacrylate Implants
,” Rapid Prototyping J.
, 16
(3
), pp. 164
–173
.10.1108/1355254101103482510.
Mireles
, J.
, Kim
, H. C.
, Lee
, I. H.
, Espalin
, D.
, Medina
, F.
, MacDonald
, E.
, and Wicker
, R.
, 2013
, “Development of a Fused Deposition Modeling System for Low Melting Temperature Metal Alloys
,” ASME J. Electron. Packag.
, 135
(1
), p. 011008
.10.1115/1.400716011.
Kalita
, S. J.
, Bose
, S.
, Hosick
, H. L.
, and Bandyopadhyay
, A.
, 2003
, “Development of Controlled Porosity Polymer-Ceramic Composite Scaffolds via Fused Deposition Modeling
,” Mater. Sci. Eng.
, 23
(5
), pp. 611
–620
.10.1016/S0928-4931(03)00052-312.
Masood
, and S. H.
, Song
, W. Q.
, 2004
, “Development of New Metal/Polymer Materials for Rapid Tooling Using Fused Deposition Modeling
,” Mater. Des.
, 25
(7
), pp. 587
–594
.10.1016/j.matdes.2004.02.00913.
Raut
, S. V.
, Jatti
, V. K. S.
, and Singh
, T. P.
, 2014
, “Mechanical Properties of Copper Filled Acrylonitrile Butadiene Styrene Composites
,” Int. J. Appl. Eng. Res.
, 9
(16
), pp. 3409
–3416
.14.
Nikzad
, M.
, Masood
, S. H.
, Sbarski
, I.
, and Groth
, A.
, 2007
, “Thermo-Mechanical Properties of a Metal-Filled Polymer Composite for Fused Deposition Modelling Applications
,” Proceedings of the 5th Australasian Congress Applied Mechanics
, Brisbane, Australia
, Dec. 10–12, pp. 319–324.15.
2011
, “PC (Polycarbonate), Stratasys
,” http://stratasys.com/materials/fdm/∼/media/Main/Secure/Material%20Specs%20MS/Fortus-Material-Specs/Fortus-MS-PC-01-13-web.ashx16.
17.
Masood
, S. H.
, Mau
, K.
, and Song
, W. Q.
, 2010
, “Tensile Properties of Processed FDM Polycarbonate Material
,” Mater. Sci. Forum
, 654–656
, pp. 2556
–2559
.10.4028/www.scientific.net/MSF.654-656.255618.
Ahn
, S. H.
, Montero
, M.
, Odell
, D.
, Roundy
, S.
, and Wright
, P. K.
, 2002
, “Anisotropic Material Properties of Fused Deposition Modeling ABS
,” Rapid Prototyping J.
, 8
(4
), pp. 248
–257
.10.1108/1355254021044116619.
Sood
, A. K.
, Ohdar
, R. K.
, and Mahapatra
, S. S.
, 2010
, “Parametric Appraisal of Mechanical Property of Fused Deposition Modeling Processed Parts
,” Mater. Des.
, 31
(1
), pp. 287
–295
.10.1016/j.matdes.2009.06.01620.
Bellini
, A.
, and Güçeri
, S.
, 2003
, “Mechanical Characterization of Parts Fabricated Using Fused Deposition Modeling
,” Rapid Prototyping J.
, 9
(4
), pp. 252
–264
.10.1108/1355254031048963121.
ASTM,
2010
, Standard Test Method for Tensile Properties of Plastics
, ASTM International
, West Conshohocken, PA.22.
ASTM,
2008
, Standard Practice for Conditioning Plastics for Testing
, ASTM International
, West Conshohocken, PA.23.
Bagsik
, A.
, and Schöppner
, V.
, 2011
, Mechanical Properties of Fused Deposition Modeling Parts Manufactured With ULTEM* 9085
, ANTEC 2011, Boston, MA
, May 1–5.24.
Perez
, A. R. T.
, Roberson
, D. A.
, and Wicker
, R. B.
, 2014
, “Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials
,” J. Failure Anal. Prev.
, 14
(3
), pp. 343
–353
.10.1007/s11668-014-9803-925.
Nadooshan
, A. A.
, Daneshmand
, S.
, and Aghanajafi
, C.
, 2007
, “Application of RP Technology With Polycarbonate Material for Wind Tunnel Model Fabrication
,” Int. J. Mech., Ind. Eng.
, 1
(8
), pp. 416–421.Copyright © 2014 by ASME
You do not currently have access to this content.