Micro-electromechanical systems (MEMS) technologies illustrate the potential for many applications in the field of tissue engineering, regenerative medicine, and life sciences. The fabrication of tissue models integrates the multidisciplinary field of life sciences and engineering. Presently, monolayer cell cultures are frequently used to investigate potential anticancer agents. These monolayer cultures give limited feedback on the effects of the micro-environment. A micro-environment, which mimics that of the target tissue, will eliminate the limitations of the traditional mainstays of tissue research. The fabrication of such micro-environment requires a thorough investigation of the actual target organ, and or tissue. Conventional MEMS technologies are developed for the fabrication of integrated circuits on silicon wafers. Conventional MEMS technologies are very expensive and are not developed for biological applications. The digital micromirroring microfabrication (DMM) system eliminates the need for an expensive chrome mask by incorporating a dynamic mask-less fabrication technique. The DMM is designed to utilize its digital micromirrors to fabricate of biological devices. This digital microfabrication system provides a platform for the fabrication of economic biological microfluidics that is specifically designed to mimic the in vivo conditions of the tissue of interest. Investigations portrayed in this paper demonstrate the DMM capabilities to develop biological microfluidics. Though the applications of the DMM are extensive, the simple sinusoidal microfluidic characterized in this paper illustrates the DMM capabilities to develop biological microfluidic chips.

References

References
1.
Arbor Research
,
2004
, “
The Organ and Transplantation Network
,” http://www.ustransplant.org
2.
Starly
,
B.
,
Lau
,
W.
,
Bradbury
,
T.
, and
Sun
,
W.
,
2006
, “
Internal Architecture Design and Freeform Fabrication of Tissue Replacement Structures
,”
Comput. Aided Des.
,
38
(
2
), pp.
115
124
.10.1016/j.cad.2005.08.001
3.
Almeida
,
H.
,
Bártolo
,
P.
, and
Ferreira
,
J.
,
2007
, “
Design of Scaffolds With Computer Assistance
,”
Modell. Med. Biol. VII
,
12
, pp.
157
–166.10.2495/BIO07
4.
Parnes
,
L. S.
,
Sun
,
A. H.
, and
Freeman
,
D. J.
,
1999
, “
Corticosteroid Pharmacokinetics in the Inner Ear Fluids: An Animal Study Followed by Clinical Application
,”
Laryngoscope
,
109
(
7
), pp.
1
17
.10.1097/00005537-199907001-00001
5.
Elliott
,
N. T.
, and
Yuan
,
F.
,
2011
, “
A Review of Three-Dimensional In Vitro Tissue Models for Drug Discovery and Transport Studies
,”
J. Pharm. Sci.
,
100
(
1
), pp.
59
74
.10.1002/jps.22257
6.
Starly
,
B.
,
2006
, “
Biomimetic Design and Fabrication of Tissue Engineered Scaffolds Using Computer Aided Tissue Engineering
,” Ph.D. dissertation, Drexel University, Philadelphia, PA.
7.
Shor
,
L.
,
2008
, “
Novel Fabrication Development for the Application of Polycaprolactone and Composite Polycaprolactone/Hydroxyapotote Scaffolds for Bone Tissue Engineering
,” Ph.D. dissertation, Drexel University, Philadelphia, PA.
8.
Huang
,
G. Y.
,
Zhou
,
L. H.
,
Zhang
,
Q. C.
,
Chen
,
Y. M.
,
Sun
,
W.
,
Xu
,
F.
, and
Lu
,
T. J.
,
2011
, “
Microfluidic Hydrogels for Tissue Engineering
,”
Biofabrication
,
3
(
1
), p.
012001
.10.1088/1758-5082/3/1/012001
9.
Jo
,
B. H.
,
Van Lerberghe
,
L. M.
,
Motsegood
,
K. M.
, and
Beebe
,
D. J.
,
2000
, “
Three-dimensional Micro-channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
76
81
.10.1109/84.825780
10.
Ho
,
C. M.
, and
Tai
,
Y. C.
,
1998
, “
Micro-electro-mechanical-systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
579
612
.10.1146/annurev.fluid.30.1.579
11.
Spearing
,
S. M.
,
2000
, “
Materials Issues in Microelectromechanical Systems (MEMS)
,”
Acta Mater.
,
48
(
1
), pp.
179
196
.10.1016/S1359-6454(99)00294-3
12.
Zhang
,
X.
,
Wang
,
W.
,
Yu
,
W.
,
Xie
,
Y.
,
Zhang
,
X.
,
Zhang
,
Y.
, and
Ma
,
X.
,
2005
, “
Development of an In Vitro Multicellular Tumor Spheroid Model Using Microencapsulation and Its Application in Anticancer Drug Screening and Testing
,”
Biotechnol. Prog.
,
21
(
4
), pp.
1289
1296
.10.1021/bp050003l
13.
Hassan
,
S. B.
,
de la Torre
,
M.
,
Nygren
,
P.
,
Karlsson
,
M. O.
,
Larsson
,
R.
, and
Jonsson
,
E.
,
2001
, “
A Hollow Fiber Model for In Vitro Studies of Cytotoxic Compounds: Activity of the Cyanoguanidine CHS 828
,”
Anticancer Drugs
,
12
(
1
), pp.
33
42
.10.1097/00001813-200101000-00005
14.
Cowan
,
D. S.
,
Hicks
,
K. O.
, and
Wilson
,
W. R.
,
1996
, “
Multicellular Membranes as an In Vitro Model for Extravascular Diffusion in Tumours
,”
Brit. J. Cancer, Suppl.
,
27
, pp.
S28
S31
.
15.
Casciari
,
J. J.
,
Hollingshead
,
M. G.
,
Alley
,
M. C.
,
Mayo
,
J. G.
,
Malspeis
,
L.
,
Miyauchi
,
S.
,
Grever
,
M. R.
, and
Weinstein
,
J. N.
,
1994
, “
Growth and Chemotherapeutic Response of Cells in a Hollow-Fiber In-Vitro Solid Tumor-Model
,”
J. Natl. Cancer Inst.
,
86
(
24
), pp.
1846
1852
.10.1093/jnci/86.24.1846
16.
Friedrich
,
M. J.
,
2003
, “
Studying Cancer in 3 Dimensions—3-D Models Foster New Insights Into Tumorigenesis
,”
JAMA
,
290
(
15
), pp.
1977
1979
.10.1001/jama.290.15.1977
17.
Xiang
,
D.
, and
Arnold
,
M. A.
,
2011
, “
Solid-state Digital Micro-mirror Array Spectrometer for Hadamard Transform Measurements of Glucose and Lactate in Aqueous Solutions
,”
Appl. Spectrosc.
,
65
(
10
), pp.
1170
1180
.10.1366/11-06340
18.
Adeyemi
,
A. A.
,
Barakat
,
N.
, and
Darcie
,
T. E.
,
2009
, “
Applications of Digital Micro-mirror Devices to Digital Optical Microscope Dynamic Range Enhancement
,”
Opt. Express
,
17
(
3
), pp.
1831
1843
.10.1364/OE.17.001831
19.
Shin
,
W.
,
Yu
,
B. A.
,
Lee
,
Y. L.
,
Yu
,
T. J.
,
Eom
,
T. J.
,
Noh
,
Y. C.
,
Lee
,
J.
, and
Ko
,
D. K.
,
2006
, “
Tunable Q-switched Erbium-doped Fiber Laser Based on Digital Micro-mirror Array
,”
Opt. Express
,
14
(
12
), pp.
5356
5364
.10.1364/OE.14.005356
20.
Lu
,
Y.
,
Mapili
,
G.
,
Suhali
,
G.
,
Chen
,
S.
, and
Roy
,
K.
,
2006
, “
A Digital Micro-mirror Device-based System for the Microfabrication of Complex, Spatially Patterned Tissue Engineering Scaffolds
,”
J. Biomed. Mater. Res. Part A
,
77
(
2
), pp.
396
405
.10.1002/jbm.a.30601
21.
Gauvin
,
R.
,
Chen
,
Y. C.
,
Lee
,
J. W.
,
Soman
,
P.
,
Zorlutuna
,
P.
,
Nichol
,
J. W.
,
Bae
,
H.
,
Chen
,
S.
, and
Khademhosseini
,
A.
,
2012
, “
Microfabrication of Complex Porous Tissue Engineering Scaffolds Using 3D Projection Stereolithography
,”
Biomaterials
,
33
(
15
), pp.
3824
3834
.10.1016/j.biomaterials.2012.01.048
22.
Catros
,
S.
,
Guillemot
,
F.
,
Nandakumar
,
A.
,
Ziane
,
S.
,
Moroni
,
L.
,
Habibovic
,
P.
,
van Blitterswijk
,
C.
,
Rousseau
,
B.
,
Chassande
,
O.
,
Amedee
,
J.
, and
Fricain
,
J. C.
,
2012
, “
Layer-by-layer Tissue Microfabrication Supports Cell Proliferation in vitro and in vivo
,”
Tissue Eng., Part C
,
18
(
1
), pp.
62
70
.10.1089/ten.tec.2011.0382
23.
Andersson
,
H.
, and
van den Berg
,
A.
,
2004
, “
Microfabrication and Microfluidics for Tissue Engineering: State of the Art and Future Opportunities
,”
Lab Chip
,
4
(
2
), pp.
98
103
.10.1039/b314469k
24.
Starly
,
B.
, and
Sun
,
W.
,
2007
, “
Internal Scaffold Architecture Designs Using Lindenmayer Systems
,”
J. Comput. Aided Des. Appl.
,
4
, pp.
395
403
.10.1080/16864360.2007.10738559
25.
Nederman
,
T.
,
Acker
,
H.
, and
Carlsson
,
J.
,
1983
, “
Penetration of Substances Into Tumor Tissue: A Methodological Study With Microelectrodes and Cellular Spheroids
,”
In Vitro
,
19
(
6
), pp.
479
488
.10.1007/BF02619595
26.
Chang
,
R.
, and
Sun
,
W.
,
2009
,
Biofabrication of Three-dimensional Liver Cell-embedded Tissue Constructs for In Vitro Drug Metabolism Models
,
LAP Lambert Academic Publishing
, OmniScriptum GmbH & Co. KG Heinrich-Böcking-Straβe 6–8, Saarbrüken, Germany.
27.
Sun
,
W.
,
Darling
,
A.
,
Starly
,
B.
, and
Nam
,
J.
,
2004
, “
Computer Engineering: Overview, Scope and Challenges
,”
Biotechnol. Appl. Biochem.
,
39
(
1
), pp.
29
47
.10.1042/BA20030108
28.
Sun
,
W.
, and
Lal
,
P.
,
2002
, “
Recent Development on Computer Aided Tissue Engineering—A Review
,”
Comput. Methods Programs Biomed.
,
67
(
2
), pp.
85
103
.10.1016/S0169-2607(01)00116-X
29.
Guijt
,
R. M.
, and
Breadmore
,
M. C.
,
2008
, “
Maskless Photolithography Using UV LEDs
,”
Lab Chip
,
8
(
8
), pp.
1402
1404
.10.1039/b800465j
30.
Hamid
,
Q.
,
Snyder
,
J.
,
Wang
,
C.
,
Timmer
,
M.
,
Hammer
,
J.
,
Guceri
,
S.
, and
Sun
,
W.
,
2011
, “
Fabrication of Three-dimensional Scaffolds Using Precision Extrusion Deposition With an Assisted Cooling Device
,”
Biofabrication
,
3
(
3
), p.
034109
.10.1088/1758-5082/3/3/034109
31.
Shor
,
L.
,
Guceri
,
S.
,
Chang
,
R.
,
Gordon
,
J.
,
Kang
,
Q.
,
Hartsock
,
L.
,
An
,
Y. H.
, and
Sun
,
W.
,
2009
, “
Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering
,”
Biofabrication
,
1
(
1
), p.
015003
.10.1088/1758-5082/1/1/015003
32.
Yan
,
K. C.
,
Nair
,
K.
, and
Sun
,
W.
,
2010
, “
Three Dimensional Multi-scale Modeling and Analysis of Cell Damage in Cell-encapsulated Alginate Constructs
,”
J. Biomech.
,
43
(
6
), pp.
1031
1038
.10.1016/S0021-9290(10)70125-1
33.
Botchwey
,
E. A.
,
Dupree
,
M. A.
,
Pollack
,
S. R.
,
Levine
,
E. M.
, and
Laurencin
,
C. T.
,
2003
, “
Tissue Engineered Bone: Measurement of Nutrient Transport in Three-dimensional Matrices
,”
J. Biomed. Mater. Res. Part A
,
67
(
1
), pp.
357
367
.10.1002/jbm.a.10111
34.
Leong
,
K.
,
Cheah
,
C.
, and
Chua
,
C.
,
2003
, “
Solid Freeform Fabrication of Three-dimensional Scaffolds for Engineering Replacement Tissues and Organs
,”
Biomaterials
,
24
(
13
), pp.
2363
2378
.10.1016/S0142-9612(03)00030-9
35.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K. C.
,
Marcolongo
,
M.
,
Barbee
,
K.
, and
Sun
,
W.
,
2009
, “
Characterization of Cell Viability During Bioprinting Processes
,”
Biotechnol. J.
,
4
(
8
), pp.
1168
1177
.10.1002/biot.200900004
You do not currently have access to this content.