There is consensus among both the research and industrial communities, and even the general public, that additive manufacturing (AM) processes capable of processing metallic materials are a set of game changing technologies that offer unique capabilities with tremendous application potential that cannot be matched by traditional manufacturing technologies. Unfortunately, with all what AM has to offer, the quality and repeatability of metal parts still hamper significantly their widespread as viable manufacturing processes. This is particularly true in industrial sectors with stringent requirements on part quality such as the aerospace and healthcare sectors. One approach to overcome this challenge that has recently been receiving increasing attention is process monitoring and real-time process control to enhance part quality and repeatability. This has been addressed by numerous research efforts in the past decade and continues to be identified as a high priority research goal. In this review paper, we fill an important gap in the literature represented by the absence of one single source that comprehensively describes what has been achieved and provides insight on what still needs to be achieved in the field of process monitoring and control for metal-based AM processes.

References

References
1.
Wohlers
,
T. T.
,
2013
,
Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report
, Wohlers Associates, Fort Collins, CO.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
Berlin, Germany
.
3.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” http://wohlersassociates.com/roadmap2009.pdf
4.
Harris
,
I. D.
,
2011
, “
Development and Implementation of Metals Additive Manufacturing
,” http://ewi.org/eto/wp-content/uploads/2013/06/Additive-Manufacturing-DOT-Paper-2011.pdf
5.
National Institute of Standards and Technology (NIST),
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” http://www.nist.gov/el/isd/upload/NISTAdd_Mfg_Report_FINAL-2.pdf
6.
AM-Platform,
2013
, “
Additive Manufacturing: Strategic Research Agenda
,” http://www.rm-platform.com/linkdoc/AM%20SRA%20Consultation%20Document.pdf
7.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, pp. 796–814.
8.
Kruth
,
J.-P.
,
Leu
,
M.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.10.1016/S0007-8506(07)63240-5
9.
Hopkinson
,
N.
, and
Dicknes
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
1
), pp.
31
39
.10.1243/095440603762554596
10.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.10.1007/s11465-013-0248-8
11.
Levy
,
G. N.
,
2010
, “
The Role and Future of the Laser Technology in the Additive Manufacturing Environment
,”
Phys. Procedia
,
5
(
Part A
), pp.
65
80
.10.1016/j.phpro.2010.08.123
12.
Boddu
,
M. R.
,
Landers
,
R. G.
, and
Liou
,
F. W.
,
2001
, “
Control of Laser Cladding for Rapid Prototyping—A Review
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
6
8
.
13.
DeVor
,
R.
,
Kapoor
,
S.
,
Cao
,
J.
, and
Ehmann
,
K.
,
2012
, “
Transforming the Landscape of Manufacturing: Distributed Manufacturing Based on Desktop Manufacturing (DM)2
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041004
.10.1115/1.4006095
14.
Steen
,
W. M.
, and
Mazumder
,
J.
,
2010
,
Laser Material Processing
,
Springer
,
Berlin, Germany
.
15.
Yan
,
X.
, and
Gu
,
P.
,
1996
, “
A Review of Rapid Prototyping Technologies and Systems
,”
Comput. Aided Des.
,
28
(
4
), pp.
307
318
.10.1016/0010-4485(95)00035-6
16.
Ma
,
X. L.
,
2013
, “
Research on Application of SLA Technology in the 3D Printing Technology
,”
Appl. Mech. Mater.
,
401
, pp.
938
941
.10.4028/www.scientific.net/AMM.401-403.938
17.
Melchels
,
F. P.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
6130
.10.1016/j.biomaterials.2010.04.050
18.
American Society of Testing Materials,
2012
, “
ASTM F2792—12a: Standard Terminology for Additive Manufacturing Technologies
,” http://www.astm.org/Standards/F2792.htm
19.
Liou
,
F. W.
,
Choi
,
J.
,
Landers
,
R.
,
Janardhan
,
V.
,
Balakrishnan
,
S.
, and
Agarwal
,
S.
,
2001
, “
Research and Development of a Hybrid Rapid Manufacturing Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
138
145
.
20.
Ghariblu
,
H.
, and
Rahmati
,
S.
,
2014
, “
New Process and Machine for Layered Manufacturing of Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041004
.10.1115/1.4026446
21.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031007
.10.1115/1.4026898
22.
Michalski
,
L.
,
Eckersdorf
,
K.
, and
McGhee
,
J.
,
1991
,
Temperature Measurement
,
Wiley
,
West Sussex, UK
.
23.
Held
,
G.
,
2008
, Introduction to Light Emitting Diode Technology and Applications,
CRC Press
,
Boca Raton, FL
.10.1201/9781420076639
24.
Bi
,
G.
,
Gasser
,
A.
,
Wissenbach
,
K.
,
Drenker
,
A.
, and
Poprawe
,
R.
,
2006
, “
Identification and Qualification of Temperature Signal for Monitoring and Control in Laser Cladding
,”
Opt. Lasers Eng.
,
44
(
12
), pp.
1348
1359
.10.1016/j.optlaseng.2006.01.009
25.
Bi
,
G.
,
Schürmann
,
B.
,
Gasser
,
A.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2007
, “
Development and Qualification of a Novel Laser-Cladding Head With Integrated Sensors
,”
Int. J. Mach. Tools Manuf.
,
47
(
3
), pp.
555
561
.10.1016/j.ijmachtools.2006.05.010
26.
Teledyne DALSA Inc.,
2013
, “
CCD vs. CMOS: Which Is better? It's Complicated
,” http://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/
27.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031003
.10.1115/1.2823085
28.
Zeinali
,
M.
, and
Khajepour
,
A.
,
2010
, “
Height Control in Laser Cladding Using Adaptive Sliding Mode Technique: Theory and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041016
.10.1115/1.4002023
29.
Salehi
,
D.
, and
Brandt
,
M.
,
2006
, “
Melt Pool Temperature Control Using LabVIEW in Nd:YAG Laser Blown Powder Cladding Process
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3–4
), pp.
273
278
.10.1007/s00170-005-2514-3
30.
Davis
,
T. A.
, and
Shin
,
Y. C.
,
2011
, “
Vision-Based Clad Height Measurement
,”
Mach. Vision Appl.
,
22
(
1
), pp.
129
136
.10.1007/s00138-009-0240-9
31.
Childs
,
P. R.
,
2001
,
Practical Temperature Measurement
,
Butterworth-Heinemann
,
Oxford, UK
.
33.
IMPAC Infrared GmbH,
2004
, “
Pyrometer Handbook: Non-Contact Thermometry
,” http://www.contika.dk/download/litteratur/teori.pdf
34.
FLIR Systems, Inc.,
2014
, “
FLIR A6700sc Series Specifications
,” http://flir.com/cs/emea/en/view/?id=63707
35.
OMEGA Engineering Inc.,
2014
, “
Omega Thermocouple Probes With Industrial Head Assemblies
,” http://www.omega.com/pptst/NBCAXL_NNXL.html
36.
Applied Sensor Technologies,
2014
, “
Overview of Temperature Sensor Types
,” http://www.appliedsensortech.com/pdf/sensor_overview.pdf
37.
Kumar
,
S.
,
2003
, “
Selective Laser Sintering: A Qualitative and Objective Approach
,”
JOM
,
55
(
10
), pp.
43
47
.10.1007/s11837-003-0175-y
38.
Edwards
,
P.
,
O'Conner
,
A.
, and
Ramulu
,
M.
,
2013
, “
Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061016
.10.1115/1.4025773
39.
Melvin
,
L. S.
, III
,
Das
,
S.
, and
Beaman
,
S.
, Jr.
,
1994
, “
Video Microscopy of Selective Laser Sintering
,”
Proceedings of the Solid Freeform Fabrication Symposium
, DTIC Document, pp.
34
41
.
40.
Gibson
,
I.
, and
Ming
,
L. W.
,
1997
, “
Low-Cost Machine Vision Monitoring of the SLS Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
59
66
.
41.
Benda
,
J.
,
1994
, “
Temperature Controlled Selective Laser Sintering
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Vol.
5
, DTIC Document, pp.
277
284
.
42.
Benda
,
J. A.
, and
Parasco
,
A.
,
1995
, “
Method for Performing Temperature-Controlled Laser Sintering
,” US Patent No. 5,427,733.
43.
Benda
,
J. A.
, and
Parasco
,
A.
,
1996
, “
Apparatus for Multiple Beam Laser Sintering
,” US Patent No. 5,508,489.
44.
Berumen
,
S.
,
Bechmann
,
F.
, and
Craeghs
,
T.
,
2012
, “
Quality Control System for the Coating Process in Laser- and Powder Bed-Based Additive Manufacturing Technologies
,”
Direct Digital Manufacturing Conference
, Berlin, Germany, Mar. 15–16.
45.
Kleszczynski
,
S.
,
zur Jacobsmühlen
,
J.
,
Sehrt
,
J.
, and
Witt
,
G.
,
2012
, “
Error Detection in Laser Beam Melting Systems by High Resolution Imaging
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp. 975–987.
46.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 24–29, pp.
521
527
.
47.
Kruth
,
J.-P.
,
Duflou
,
J.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
,
Craeghs
,
T.
, and
De Keuster
,
J.
,
2007
, “
On-Line Monitoring and Process Control in Selective Laser Melting and Laser Cutting
,”
Proceedings of the 5th Lane Conference
, Laser Assisted Net Shape Engineering, Vol.
1
, Erlangen, Germany, Sept. 25–28, pp.
23
37
.
48.
Kruth
,
J.-P.
, and
Mercelis
,
P.
,
2009
, “
Procedure and Apparatus for In-Situ Monitoring and Feedback Control of Selective Laser Powder Processing
,” US Patent No. 12/308,032.
49.
De Keuster
,
J.
,
Duflou
,
J.
,
Kruth
,
J.-P.
, and
Serruys
,
W.
,
2011
, “
Arrangement and Method for the On-line Monitoring of the Quality of a Laser Process Exerted on a Workpiece
,” US Patent No. 7,863,544.
50.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2011
, “
Determination of Geometrical Factors in Layerwise Laser Melting Using Optical Process Monitoring
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1440
1446
.10.1016/j.optlaseng.2011.06.016
51.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys. Procedia
,
5
(
Part B
), pp.
505
514
.10.1016/j.phpro.2010.08.078
52.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
, and
Kruth
,
J.-P.
,
2011
, “
Online Quality Control of Selective Laser Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
, Austin, TX, pp. 212–226.
53.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys. Procedia
,
39
, pp.
753
759
.10.1016/j.phpro.2012.10.097
54.
Berumen
,
S.
,
Bechmann
,
F.
,
Lindner
,
S.
,
Kruth
,
J.-P.
, and
Craeghs
,
T.
,
2010
, “
Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies
,”
Phys. Procedia
,
5
(
Part B
), pp.
617
622
.10.1016/j.phpro.2010.08.089
55.
Lott
,
P.
,
Schleifenbaum
,
H.
,
Meiners
,
W.
,
Wissenbach
,
K.
,
Hinke
,
C.
, and
Bültmann
,
J.
,
2011
, “
Design of an Optical System for the In Situ Process Monitoring of Selective Laser Melting (SLM)
,”
Phys. Procedia
,
12
(
Part A
), pp.
683
690
.10.1016/j.phpro.2011.03.085
56.
Chivel
,
Y.
, and
Smurov
,
I.
,
2007
, “
SLS Process Monitoring and Adaptive Control
,”
Proceedings of the Fourth International WLT—Conference on Lasers in Manufacturing
, Munich, Germany, June, pp.
553
556
.
57.
Chivel
,
Y.
, and
Smurov
,
I.
,
2010
, “
On-Line Temperature Monitoring in Selective Laser Sintering/Melting
,”
Phys. Procedia
,
5
(
Part B
), pp.
515
521
.10.1016/j.phpro.2010.08.079
58.
Chivel
,
Y.
, and
Smurov
,
I.
,
2010
, “
Temperature Monitoring in Selective Laser Sintering/Melting
,”
Fundamentals of Laser Assisted Micro-and Nanotechnologies
, International Society for Optics and Photonics.
59.
Rombouts
,
M.
,
Kruth
,
J.-P.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
187
192
.10.1016/S0007-8506(07)60395-3
60.
Shishkovsky
,
I.
,
Scherbakov
,
V.
,
Morozov
,
Y.
,
Kuznetsov
,
M.
, and
Parkin
,
I.
,
2008
, “
Surface Laser Sintering of Exothermic Powder Compositions
,”
J. Therm. Anal. Calorim.
,
91
(
2
), pp.
427
436
.10.1007/s10973-007-8353-8
61.
Bayle
,
F.
, and
Doubenskaia
,
M.
,
2008
, “
Selective Laser Melting Process Monitoring With High Speed Infra-Red Camera and Pyrometer
,”
Fundamentals of Laser Assisted Micro-and Nanotechnologies
, International Society for Optics and Photonics. p.
698505
.
62.
Doubenskaia
,
M.
,
Pavlov
,
M.
, and
Chivel
,
Y.
,
2010
, “
Optical System for On-line Monitoring and Temperature Control in Selective Laser Melting Technology
,”
Key Eng. Mater.
,
437
, pp.
458
461
.10.4028/www.scientific.net/KEM.437.458
63.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2
), pp.
117
123
.10.1016/j.ijmachtools.2003.10.019
64.
Bai
,
P.-K.
,
Cheng
,
J.
,
Liu
,
B.
, and
Wang
,
W.-F.
,
2006
, “
Numerical Simulation of Temperature Field During Selective Laser Sintering of Polymer-Coated Molybdenum Powder
,”
Trans. Nonferrous Met. Soc. China
,
16
(
Suppl. 2
), pp.
s603
s607
.10.1016/S1003-6326(06)60264-1
65.
Bai
,
P.-K.
, and
Wang
,
W.-F.
,
2007
, “
Selective Laser Sintering Mechanism of Polymer-Coated Molybdenum Powder
,”
Trans. Nonferrous Met. Soc. China
,
17
(
3
), pp.
543
547
.10.1016/S1003-6326(07)60130-7
66.
Roberts
,
I.
,
Wang
,
C.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12
), pp.
916
923
.10.1016/j.ijmachtools.2009.07.004
67.
Gao
,
Y.
,
Xing
,
J.
,
Zhang
,
J.
,
Luo
,
N.
, and
Zheng
,
H.
,
2008
, “
Research on Measurement Method of Selective Laser Sintering (SLS) Transient Temperature
,”
Optik
,
119
(
13
), pp.
618
623
.10.1016/j.ijleo.2007.01.010
68.
Childs
,
T.
,
Hauser
,
C.
, and
Badrossamay
,
M.
,
2005
, “
Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modeling
,”
Proc. Inst. Mech. Eng., Part B
,
219
(
4
), pp.
339
357
.10.1243/095440505X8109
69.
Dinwiddie
,
R. B.
,
Dehoff
,
R. R.
,
Lloyd
,
P. D.
,
Lowe
,
L. E.
, and
Ulrich
,
J. B.
,
2013
, “
Thermographic In-Situ Process Monitoring of the Electron-Beam Melting Technology Used in Additive Manufacturing
,” SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, pp.
87050K-1
87050K-9
.
70.
Price
,
S.
,
Cooper
,
K.
, and
Chou
,
K.
,
2012
, “
Evaluations of Temperature Measurements by Near-Infrared Thermography in Powder-Based Electron-Beam Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp. 761–773.
71.
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2013
, “
Experimental Temperature Analysis of Powder-Based Electron Beam Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp. 162–173.
72.
Schwerdtfeger
,
J.
,
Singer
,
R. F.
, and
Körner
,
C.
,
2012
, “
In Situ Flaw Detection by IR-Imaging During Electron Beam Melting
,”
Rapid Prototyping J.
,
18
(
4
), pp.
259
263
.10.1108/13552541211231572
73.
Zäh
,
M. F.
, and
Lutzmann
,
S.
,
2010
, “
Modeling and Simulation of Electron Beam Melting
,”
Prod. Eng.
,
4
(
1
), pp.
15
23
.10.1007/s11740-009-0197-6
74.
Scharowsky
,
T.
,
Bauereiß
,
A.
,
Singer
,
R.
, and
Körner
,
C.
,
2012
, “
Observation and Numerical Simulation of Melt Pool Dynamic and Beam Powder Interaction During Selective Electron Beam Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp. 815–820.
75.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
.10.1115/1.4025061
76.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.10.1115/1.4025746
77.
Islam
,
M.
,
Purtonen
,
T.
,
Piili
,
H.
,
Salminen
,
A.
, and
Nyrhilä
,
O.
,
2013
, “
Temperature Profile and Imaging Analysis of Laser Additive Manufacturing of Stainless Steel
,”
Phys. Procedia
,
41
, pp.
828
835
.10.1016/j.phpro.2013.03.156
78.
Islam
,
M.
,
Taimisto
,
L.
,
Piili
,
H.
,
Salminen
,
A.
, and
Nyrhilä
,
O.
,
2012
, “
Evaluation of Effect of Heat Input in Laser Assisted Additive Manufacturing of Stainless Steel
,”
Proceedings of the 37th International MATADOR Conference
, Vol.
10
, pp.
361
364
.
79.
Islam
,
M.
,
Taimisto
,
L.
,
Piili
,
H.
,
Salminen
,
A.
, and
Nyrhilä
,
O.
,
2012
, “
Comparison of Theoretical and Practical Studies of Heat Input in Laser Assisted Additive Manufacturing of Stainless Steel
,”
Proceedings of the 37th International MATADOR Conference
, Vol.
10
, pp.
365
368
.
80.
Furumoto
,
T.
,
Alkahari
,
M. R.
,
Ueda
,
T.
,
Aziz
,
M. S. A.
, and
Hosokawa
,
A.
,
2012
, “
Monitoring of Laser Consolidation Process of Metal Powder With High Speed Video Camera
,”
Phys. Procedia
,
39
, pp.
760
766
.10.1016/j.phpro.2012.10.098
81.
Furumoto
,
T.
,
Ueda
,
T.
,
Alkahari
,
M. R.
, and
Hosokawa
,
A.
,
2013
, “
Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
223
226
.10.1016/j.cirp.2013.03.032
82.
Dadbakhsh
,
S.
,
Hao
,
L.
, and
Sewell
,
N.
,
2012
, “
Effect of Selective Laser Melting Layout on the Quality of Stainless Steel Parts
,”
Rapid Prototyping J.
,
18
(
3
), pp.
241
249
.10.1108/13552541211218216
83.
Song
,
Y.-A.
, and
Koenig
,
W.
,
1997
, “
Experimental Study of the Basic Process Mechanism for Direct Selective Laser Sintering of Low-Melting Metallic Powder
,”
CIRP Ann. Manuf. Technol.
,
46
(
1
), pp.
127
130
.10.1016/S0007-8506(07)60790-2
84.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
.
85.
Van Belle
,
L.
,
Vansteenkiste
,
G.
, and
Boyer
,
J. C.
,
2013
, “
Investigation of Residual Stresses Induced During the Selective Laser Melting Process
,”
Key Eng. Mater.
,
554
, pp.
1828
1834
.10.4028/www.scientific.net/KEM.554-557.1828
86.
Taylor
,
C.
, and
Childs
,
T.
,
2001
, “
Thermal Experiments in direct Metal Laser Sintering
,”
Proceedings of Euro RP
.
87.
Fischer
,
P.
,
Locher
,
M.
,
Romano
,
V.
,
Weber
,
H.-P.
,
Kolossov
,
S.
, and
Glardon
,
R.
,
2004
, “
Temperature Measurements During Selective Laser Sintering of Titanium Powder
,”
Int. J. Mach. Tools Manuf.
,
44
(
12
), pp.
1293
1296
.10.1016/j.ijmachtools.2004.04.019
88.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H.-P.
, and
Kolossov
,
S.
,
2004
, “
Pulsed Laser Sintering of Metallic Powders
,”
Thin Solid Films
,
453
, pp.
139
144
.10.1016/j.tsf.2003.11.152
89.
Pavlov
,
M.
,
Doubenskaia
,
M.
, and
Smurov
,
I.
,
2010
, “
Pyrometric Analysis of Thermal Processes in SLM Technology
,”
Phys. Procedia
,
5
(
Part B
), pp.
523
531
.10.1016/j.phpro.2010.08.080
90.
Rodriguez
,
E.
,
Medina
,
F.
,
Espalin
,
D.
,
Terrazas
,
C.
,
Muse
,
D.
,
Henry
,
C.
, and
Wicker
,
R.
,
2012
, “
Integration of a Thermal Imaging Feedback Control System in Electron Beam Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
.
91.
Mireles
,
J.
,
Terrazas
,
C.
,
Medina
,
F.
, and
Wicker
,
R.
,
2013
, “
Automatic Feedback Control in Electron Beam Melting Using Infrared Thermography
,”
Proceedings of the Solid Freeform Fabrication Symposium
.
92.
Chung
,
M.
, and
Allanic
,
A.-L.
,
2004
, “
Sintering Using Thermal Image Feedback
,” US Patent No. 6,815,636.
93.
Chung
,
T. M.
, and
Partanen
,
J. P.
,
2005
, “
Continuous Calibration of a Non-contact Thermal Sensor for Laser Sintering
,” US Patent No. 6,930,278.
94.
Huskamp
,
C. S.
,
2009
, “
Methods and Systems for Controlling and Adjusting Heat Distribution Over a Part Bed
,” US Patent No. 7,515,986.
95.
Beaman
,
J. J.
, and
Grube
,
K. W.
,
1992
, “
Radiant Heating Apparatus for Providing Uniform Surface Temperature Useful in Selective Laser Sintering
,” US Patent No. 5,155,321.
96.
Beaman
,
J. J.
,
McGrath
,
J. C.
, and
Prioleau
,
F. R.
,
1994
, “
Thermal Control of Selective Laser Sintering Via Control of the Laser Scan
,” US Patent No. 5,352,405.
97.
Low
,
S. C.
, and
Ake
,
B. E.
,
2004
, “
Thermocouple Control System for Selective Laser Sintering Part Bed Temperature Control
,” US Patent No. 6,822,194.
98.
Bi
,
G.
,
Gasser
,
A.
,
Wissenbach
,
K.
,
Drenker
,
A.
, and
Poprawe
,
R.
,
2006
, “
Characterization of the Process Control for the Direct Laser Metallic Powder Deposition
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
2676
2683
.10.1016/j.surfcoat.2006.05.006
99.
Bi
,
G.
,
Sun
,
C.
, and
Gasser
,
A.
,
2013
, “
Study on Influential Factors for Process Monitoring and Control in Laser Aided Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
3
), pp.
463
468
.10.1016/j.jmatprotec.2012.10.006
100.
Hu
,
D.
,
Mei
,
H.
, and
Kovacevic
,
R.
,
2002
, “
Improving Solid Freeform Fabrication by Laser-Based Additive Manufacturing
,”
Proc. Inst. Mech. Eng., Part B
,
216
(
9
), pp.
1253
1264
.10.1243/095440502760291808
101.
Hu
,
D.
,
Mei
,
H.
, and
Kovacevic
,
R.
,
2001
, “
Closed Loop Control of 3D Laser Cladding Based on Infrared Sensing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
129
137
.
102.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Modeling and Measuring the Thermal Behaviour of the Molten Pool in Closed-Loop Controlled Laser-Based Additive Manufacturing
,”
Proc. Inst. Mech. Eng.
, Part B,
217
(
4
), pp.
441
452
.10.1243/095440503321628125
103.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.10.1016/S0890-6955(02)00163-3
104.
Jandric
,
Z.
,
Kmecko
,
I. S.
,
Kovacevic
,
R.
, and
Valant
,
M. E.
,
2005
, “
System and Method for Controlling Welding Parameters in Welding-Based Deposition Processes
,” US Patent No. 6,940,037.
105.
Hu
,
D.
,
Kovacevic
,
R.
, and
Valant
,
M. E.
,
2006
, “
System and Method for Controlling the Size of the Molten Pool in Laser-Based Additive Manufacturing
,” US Patent No. 6,995,334.
106.
Kovacevic
,
R.
, and
Valant
,
M. E.
,
2006
, “
Powder Delivery System and Method
,” US Patent No. 7,045,738.
107.
Xing
,
F.
,
Liu
,
W.
,
Zhang
,
K.
,
Shang
,
X.
, and
Wang
,
T.
,
2006
, “
Intelligent Metal Powder Laser Forming System
,”
Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management
,
Springer
,
Berlin, Germany
, pp.
525
535
.
108.
Xing
,
F.
,
Liu
,
W.
, and
Wang
,
T.
,
2006
, “
Real-Time Sensing and Control of Metal Powder Laser Forming
,”
World Congress on Intelligent Control and Automation WCICA
, Vol.
2
, Dalian, China, June 21–23, pp.
6661
6665
.
109.
Jiang
,
S.
,
Liu
,
W.
, and
Xing
,
F.
,
2006
, “
Research on Measuring and Control System of Metal Powder Laser Shaping
,”
Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation
, Luoyang, China, June 25–28, pp.
1717
1721
.
110.
Meriaudeau
,
F.
,
Truchetet
,
F.
,
Dumont
,
C.
,
Renier
,
E.
, and
Bolland
,
P.
,
1996
, “
Acquisition and Image Processing System Able to Optimize Laser Cladding Process
,”
3rd International Conference on Signal Processing
, Vol.
2
, Beijing, China, Oct. 14–18, pp.
1628
1631
.
111.
Meriaudeau
,
F.
, and
Truchetet
,
F.
,
1996
, “
Control and Optimization of the Laser Cladding Process Using Matrix Cameras and Image Processing
,”
J. Laser Appl.
,
8
(
6
), pp.
317
324
.10.2351/1.4745438
112.
Doubenskaia
,
M.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2004
, “
Optical Monitoring of Nd:YAG Laser Cladding
,”
Thin Solid Films
,
453
, pp.
477
485
.10.1016/j.tsf.2003.11.184
113.
Smurov
,
I.
,
Doubenskaia
,
M.
,
Grigoriev
,
S.
, and
Nazarov
,
A.
,
2012
, “
Optical Monitoring in Laser Cladding of Ti6Al4V
,”
J. Therm. Spray Technol.
,
21
(
6
), pp.
1357
1362
.10.1007/s11666-012-9808-4
114.
Tang
,
L.
,
Ruan
,
J.
,
Landers
,
R. G.
, and
Liou
,
F.
,
2008
, “
Variable Powder Flow Rate Control in Laser Metal Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041016
.10.1115/1.2953074
115.
Iravani-Tabrizipour
,
M.
, and
Toyserkani
,
E.
,
2007
, “
An Image-Based Feature Tracking Algorithm for Real-Time Measurement of Clad Height
,”
Mach. Vision Appl.
,
18
(
6
), pp.
343
354
.10.1007/s00138-006-0066-7
116.
Clare
,
A.
,
Oyelola
,
O.
,
Abioye
,
T.
, and
Farayibi
,
P.
,
2012
, “
Laser Cladding of Rail Steel With Co–Cr
,”
Proceedings of the 37th International MATADOR Conference
, Vol.
10
, pp.
349
353
.
117.
Valsecchi
,
B.
,
Previtali
,
B.
,
Vedani
,
M.
, and
Vimercati
,
G.
,
2010
, “
Fiber Laser Cladding With High Content of WC-Co Based Powder
,”
Int. J. Mater. Form.
,
3
(
1
), pp.
1127
1130
.10.1007/s12289-010-0970-2
118.
Shah
,
K.
,
Pinkerton
,
A. J.
,
Salman
,
A.
, and
Li
,
L.
,
2010
, “
Effects of Melt Pool Variables and Process Parameters in Laser Direct Metal Deposition of Aerospace Alloys
,”
Mater. Manuf. Process.
,
25
(
12
), pp.
1372
1380
.10.1080/10426914.2010.480999
119.
Doubenskaia
,
M.
,
Pavlov
,
M.
,
Grigoriev
,
S.
, and
Smurov
,
I.
,
2013
, “
Definition of Brightness Temperature and Restoration of True Temperature in Laser Cladding Using Infrared Camera
,”
Surf. Coat. Technol.
,
220
, pp.
244
247
.10.1016/j.surfcoat.2012.10.044
120.
Nan
,
L.
, and
Liu
,
W.
,
2006
, “
Sensing and Control for Geometry Stability of the Melt Pool and the Cross Sectional Area in Laser Cladding
,”
First International Conference on Innovative Computing, Information and Control ICICIC
, Vol.
1
, Beijing, China, Aug. 30–Sept. 1, pp.
521
524
.
121.
Liu
,
S.
,
Farahmand
,
P.
, and
Kovacevic
,
R.
,
2014
, “
Optical Monitoring of High Power Direct Diode Laser Cladding
,”
Opt. Laser Technol.
,
64
, pp.
363
376
.10.1016/j.optlastec.2014.06.002
122.
Duley
,
W. W.
, and
Kinsman
,
G.
,
1997
, “
Method and Apparatus for Real-Time Control of Laser Processing of Materials
,” US Patent No. 5,659,479.
123.
Carbone
,
F.
,
2005
, “
Directed Energy Net Shape Method and Apparatus
,” US Patent No. 11/054,770.
124.
Bagavath-Singh
,
V.
,
2006
, “
Part-Geometry Independent Real Time Closed Loop Weld Pool Temperature Control System for Multi-Layer DMD Process
,” US Patent No. 10/525,938.
125.
Hofmeister
,
W.
, and
Griffith
,
M.
,
2001
, “
Solidification in Direct Metal Deposition by LENS Processing
,”
JOM
,
53
(
9
), pp.
30
34
.10.1007/s11837-001-0066-z
126.
Hofmeister
,
W.
,
Knorovsky
,
G. A.
, and
Maccallum
,
D. O.
,
1999
, “
Video Monitoring and Control of the LENS Process
,”
9th International Conference of Computer Technology in Welding
, American Welding Society.
127.
Griffith
,
M.
,
Schlienger
,
M.
,
Harwell
,
L.
,
Oliver
,
M.
,
Baldwin
,
M.
,
Ensz
,
M.
,
Essien
,
M.
,
Brooks
,
J.
,
Robino
,
C.
,
Smugeresky
,
J.
,
Hofmeister
,
W.
,
Wert
,
M.
, and
Nelson
,
D.
,
1999
, “
Understanding Thermal Behavior in the LENS Process
,”
Mater. Des.
,
20
(
2
), pp.
107
113
.10.1016/S0261-3069(99)00016-3
128.
Griffith
,
M. L.
,
Hofmeister
,
W. H.
,
Knorovsky
,
G. A.
,
MacCallum
,
D. O.
,
Schlienger
,
M. E.
, and
Smugeresky
,
J. E.
,
2002
, “
Direct Laser Additive Fabrication System With Image Feedback Control
,” US Patent No. 6,459,951.
129.
Bernges
,
J.
,
Kessler
,
B.
, and
Schuermann
,
B.
,
2005
, “
Sensor Device for Detecting Radiation From the Region of a Zone of Interaction Between a Laser Beam and a Workpiece and Device for Monitoring a Laser Machining Operation and Laser Machining Head
,” US Patent No. 11/115,244.
130.
Fehrmann
,
B.
, and
Hoebel
,
M.
,
2009
, “
Method of Controlled Remelting of or Laser Metal Forming on the Surface of an Article
,” US Patent No. 7,586,061.
131.
Zhong
,
M.
,
Liu
,
W.
,
Ning
,
G.
,
Yang
,
L.
, and
Chen
,
Y.
,
2004
, “
Laser Direct Manufacturing of Tungsten Nickel Collimation Component
,”
J. Mater. Process. Technol.
,
147
(
2
), pp.
167
173
.10.1016/j.jmatprotec.2003.12.009
132.
Hua
,
T.
,
Jing
,
C.
,
Xin
,
L.
,
Fengying
,
Z.
, and
Weidong
,
H.
,
2008
, “
Research on Molten Pool Temperature in the Process of Laser Rapid Forming
,”
J. Mater. Process. Technol.
,
198
(
1
), pp.
454
462
.10.1016/j.jmatprotec.2007.06.090
133.
Lin
,
J.
, and
Steen
,
W.
,
1998
, “
An In-process Method for the Inverse Estimation of the Powder Catchment Efficiency During Laser Cladding
,”
Opt. Laser Technol.
,
30
(
2
), pp.
77
84
.10.1016/S0030-3992(98)00007-3
134.
Zhu
,
G.
,
Li
,
D.
,
Zhang
,
A.
,
Pi
,
G.
, and
Tang
,
Y.
,
2011
, “
The Influence of Standoff Variations on the Forming Accuracy in Laser Direct Metal Deposition
,”
Rapid Prototyping J.
,
17
(
2
), pp.
98
106
.10.1108/13552541111113844
135.
Zhu
,
G.
,
Li
,
D.
,
Zhang
,
A.
,
Pi
,
G.
, and
Tang
,
Y.
,
2012
, “
The Influence of Laser and Powder Defocusing Characteristics on the Surface Quality in Laser Direct Metal Deposition
,”
Opt. Laser Technol.
,
44
(
2
), pp.
349
356
.10.1016/j.optlastec.2011.07.013
136.
Leong
,
K.
,
Ho
,
K.
, and
Han
,
H.
,
2005
, “
Monitoring Laser Cladding
,”
24th International Congress on Applications of Lasers and Electro-Optics
, ICALEO, pp.
895
899
.
137.
Tan
,
H.
,
Chen
,
J.
,
Zhang
,
F.
,
Lin
,
X.
, and
Huang
,
W.
,
2010
, “
Estimation of Laser Solid Forming Process Based on Temperature Measurement
,”
Opt. Laser Technol.
,
42
(
1
), pp.
47
54
.10.1016/j.optlastec.2009.04.016
138.
Li
,
L.
, and
Steen
,
W. M.
,
1990
, “
In-Process Clad Quality Monitoring Using Optical Method
,”
Proceedings SPIE 1279, Laser-Assisted Processing II
, International Society for Optics and Photonics, pp.
89
100
.
139.
Ermurat
,
M.
,
Arslan
,
M. A.
,
Erzincanli
,
F.
, and
Uzman
,
I.
,
2013
, “
Process Parameters Investigation of a Laser-Generated Single Clad for Minimum Size Using Design of Experiments
,”
Rapid Prototyping J.
,
19
(
6
), pp.
452
462
.10.1108/RPJ-06-2011-0062
140.
Lee
,
H.-K.
,
2008
, “
Effects of the Cladding Parameters on the Deposition Efficiency in Pulsed Nd:YAG Laser Cladding
,”
J. Mater. Process. Technol.
,
202
(
1
), pp.
321
327
.10.1016/j.jmatprotec.2007.09.024
141.
Labudovic
,
M.
,
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
A Three Dimensional Model for Direct Laser Metal Powder Deposition and Rapid Prototyping
,”
J. Mater. Sci.
,
38
(
1
), pp.
35
49
.10.1023/A:1021153513925
142.
Ye
,
R.
,
Smugeresky
,
J. E.
,
Zheng
,
B.
,
Zhou
,
Y.
, and
Lavernia
,
E. J.
,
2006
, “
Numerical Modeling of the Thermal Behavior During the LENS Process
,”
Mater. Sci. Eng. A
,
428
(
1
), pp.
47
53
.10.1016/j.msea.2006.04.079
143.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J. P.
,
2007
, “
Three-Dimensional Numerical Approach for Geometrical Prediction of Multilayer Laser Solid Freeform Fabrication Process
,”
J. Laser Appl.
,
19
(
1
).10.2351/1.2402518
144.
Han
,
L.
,
Phatak
,
K.
, and
Liou
,
F.
,
2004
, “
Modeling of Laser Cladding With Powder Injection
,”
Metall. Mater. Trans. B
,
35
(
6
), pp.
1139
1150
.10.1007/s11663-004-0070-0
145.
Tan
,
H.
,
Chen
,
J.
,
Zhang
,
F.
,
Lin
,
X.
, and
Huang
,
W.
,
2010
, “
Process Analysis for Laser Solid Forming of Thin-Wall Structure
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
1
8
.10.1016/j.ijmachtools.2009.10.003
146.
Jendrzejewski
,
R.
,
Kreja
,
I.
, and
Śliwiński
,
G.
,
2004
, “
Temperature Distribution in Laser-Clad Multi-Layers
,”
Mater. Sci. Eng. A
,
379
(
1
), pp.
313
320
.10.1016/j.msea.2004.02.053
147.
Wang
,
L.
,
Felicelli
,
S. D.
, and
Craig
,
J. E.
,
2009
, “
Experimental and Numerical Study of the LENS Rapid Fabrication Process
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041019
.10.1115/1.3173952
148.
Qian
,
L.
,
Mei
,
J.
,
Liang
,
J.
, and
Wu
,
X.
,
2005
, “
Influence of Position and Laser Power on Thermal History and Microstructure of Direct Laser Fabricated Ti–6Al–4V Samples
,”
Mater. Sci. Technol.
,
21
(
5
), pp.
597
605
.10.1179/174328405X21003
149.
Hu
,
Y.
,
Chen
,
C.
, and
Mukherjee
,
K.
,
2000
, “
Measurement of Temperature Distributions During Laser Cladding Process
,”
J. Laser Appl.
,
12
(
3
), pp.
126
130
.10.2351/1.521921
150.
Kelly
,
J. K.
,
2002
, “
Direct-Metal-Deposition (DMD) Nozzle Fault Detection Using Temperature Measurements
,” US Patent No. 6,423,926.
151.
Lin
,
J.
, and
Steen
,
W.
,
1998
, “
Design Characteristics and Development of a Nozzle for Coaxial Laser Cladding
,”
J. Laser Appl.
,
10
(
2
), pp.
55
63
.10.2351/1.521821
152.
Hu
,
X. D.
,
Kong
,
F. Z.
, and
Yao
,
J. H.
,
2011
, “
Development of Monitoring and Control System for Laser Remanufacturing
,”
Appl. Mech. Mater.
,
44
, pp.
81
85
.
153.
Jeantette
,
F. P.
,
Keicher
,
D. M.
,
Romero
,
J. A.
, and
Schanwald
,
L. P.
,
2000
, “
Method and System for Producing Complex-Shape Objects
,” US Patent No. 6,046,426.
154.
Smurov
,
I.
,
Doubenskaia
,
M.
, and
Zaitsev
,
A.
,
2012
, “
Complex Analysis of Laser Cladding Based on Comprehensive Optical Diagnostics and Numerical Simulation
,”
Phys. Procedia
,
39
, pp.
743
752
.10.1016/j.phpro.2012.10.096
155.
Balu
,
P.
,
Leggett
,
P.
, and
Kovacevic
,
R.
,
2012
, “
Parametric Study on a Coaxial Multi-Material Powder Flow in Laser-Based Powder Deposition Process
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1598
1610
.10.1016/j.jmatprotec.2012.02.020
156.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part I: Online Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011010
.10.1115/1.4000882
157.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes—Part II: Layer-to-Layer Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011011
.10.1115/1.4000883
158.
Boddu
,
M. R.
,
Musti
,
S.
,
Landers
,
R. G.
,
Agarwal
,
S.
, and
Liou
,
F. W.
,
2001
, “
Empirical Modeling and Vision Based Control for Laser Aided Metal Deposition Process
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
452
459
.
159.
Song
,
L.
,
Bagavath-Singh
,
V.
,
Dutta
,
B.
, and
Mazumder
,
J.
,
2012
, “
Control of Melt Pool Temperature and Deposition Height During Direct Metal Deposition Process
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
247
256
.10.1007/s00170-011-3395-2
160.
Mazumder
,
J.
,
Schifferer
,
A.
, and
Choi
,
J.
,
1999
, “
Direct Materials Deposition: Designed Macro and Microstructure
,”
Mater. Res. Innovations
,
3
(
3
), pp.
118
131
.10.1007/s100190050137
161.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4
), pp.
397
414
.10.1016/S0143-8166(00)00072-5
162.
Hua
,
Y.
, and
Choi
,
J.
,
2005
, “
Feedback Control Effects on Dimensions and Defects of H13 Tool Steel by Direct Metal Deposition Process
,”
J. Laser Appl.
,
17
(
2
), pp.
118
126
.10.2351/1.1848530
163.
Mazumder
,
J.
,
Skszek
,
T.
,
Kelly
,
J. K.
, and
Choi
,
J.
,
2002
, “
Production of Overhang, Undercut, and Cavity Structures Using Direct Metal Depostion
,” US Patent No. 6,410,105.
164.
Kelly
,
J. K.
, and
Mazumder
,
J.
,
2005
, “
Closed-Loop, Rapid Manufacturing of Three-Dimensional Components Using Direct Metal Deposition
,” US Patent No. 6,925,346.
165.
Koch
,
J.
, and
Mazumder
,
J.
,
2000
, “
Apparatus and Methods for Monitoring and Controlling Multi-Layer Laser Cladding
,” US Patent No. 6,122,564.
166.
Mazumder
,
J.
, and
Song
,
L.
,
2008
, “
Real-Time Implementation of Generalized Predictive Algorithm for Direct Metal Deposition (DMD) Process Control
,” US Patent No. 12/130,351.
167.
Toyserkani
,
E.
, and
Khajepour
,
A.
,
2006
, “
A Mechatronics Approach to Laser Powder Deposition Process
,”
Mechatronics
,
16
(
10
), pp.
631
641
.10.1016/j.mechatronics.2006.05.002
168.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
,
2004
, “
System and Method for Closed-Loop Control of Laser Cladding by Powder Injection
,” US Patent No. 10/697,552.
169.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
,
2006
, “
Combines Laser Cladding Technique Along With Automated Direct Feedback Control to Achieve a Good Quality Clad in Terms of Dimensional and Metallurgical Characteristics
,” US Patent No. 7,043,330.
170.
Suh
,
J.
,
2008
, “
Method and System for Real-Time Monitoring and Controlling Height of Deposit by Using Image Photographing and Image Processing Technology in Laser Cladding and Laser-Aided Direct Metal Manufacturing Process
,” US Patent No. 10/495,185.
171.
Liu
,
J.
, and
Li
,
L.
,
2004
, “
In-time Motion Adjustment in Laser Cladding Manufacturing Process for Improving Dimensional Accuracy and Surface Finish of the Formed Part
,”
Opt. Laser Technol.
,
36
(
6
), pp.
477
483
.10.1016/j.optlastec.2003.12.003
172.
Mok
,
S. H.
,
Bi
,
G.
,
Folkes
,
J.
, and
Pashby
,
I.
,
2008
, “
Deposition of Ti–6Al–4V Using a High Power Diode Laser and Wire, Part I: Investigation on the Process Characteristics
,”
Surf. Coat. Technol.
,
202
(
16
), pp.
3933
3939
.10.1016/j.surfcoat.2008.02.008
173.
Mok
,
S. H.
,
Bi
,
G.
,
Folkes
,
J.
,
Pashby
,
I.
, and
Segal
,
J.
,
2008
, “
Deposition of Ti–6Al–4V Using a High Power Diode Laser and Wire, Part II: Investigation on the Mechanical Properties
,”
Surf. Coat. Technol.
,
202
(
19
), pp.
4613
4619
.10.1016/j.surfcoat.2008.03.028
174.
Zalameda
,
J. N.
,
Burke
,
E. R.
,
Hafley
,
R. A.
,
Taminger
,
K. M.
,
Domack
,
C. S.
,
Brewer
,
A.
, and
Martin
,
R. E.
,
2013
, “
Thermal Imaging for Assessment of Electron-Beam Freeform Fabrication (EBF3) Additive Manufacturing Deposits
,”
SPIE Defense, Security, and Sensing, International Society for Optics and Photonics
.
175.
Medranoa
,
A.
,
Folkes
,
J.
,
Segala
,
J.
, and
Pashbya
,
I.
,
2009
, “
Fibre Laser Metal Deposition With Wire: Parameters Study and Temperature Monitoring System
,”
Proceedings of SPIE
, Vol.
7131
.
176.
Heralić
,
A.
,
Christiansson
,
A.-K.
,
Ottosson
,
M.
, and
Lennartson
,
B.
,
2010
, “
Increased Stability in Laser Metal Wire Deposition Through Feedback From Optical Measurements
,”
Opt. Lasers Eng.
,
48
(
4
), pp.
478
485
.10.1016/j.optlaseng.2009.08.012
177.
Heralić
,
A.
,
Christiansson
,
A.-K.
, and
Lennartson
,
B.
,
2012
, “
Height Control of Laser Metal-Wire Deposition Based on Iterative Learning Control and 3D Scanning
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1230
1241
.10.1016/j.optlaseng.2012.03.016
178.
Taminger
,
K. M.
,
Hafley
,
R. A.
,
Martin
,
R. E.
, and
Hofmeister
,
W. H.
,
2013
, “
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
,” US Patent No. 8,452,073.
179.
Stecker
,
S.
, and
Wollenhaupt
,
P. E.
,
2013
, “
Electron Beam Layer Manufacturing Using Scanning Electron Monitored Closed Loop Control
,” US Patent No. 8,598,523.
180.
Schick
,
D.
,
Babu
,
S. S.
,
Foster
,
D. R.
,
Dapino
,
M.
,
Short
,
M.
, and
Lippold
,
J. C.
,
2011
, “
Transient Thermal Response in Ultrasonic Additive Manufacturing of Aluminum 3003
,”
Rapid Prototyping J.
,
17
(
5
), pp.
369
379
.10.1108/13552541111156496
181.
Kelly
,
G. S.
,
Advani
,
S. G.
,
Gillespie
,
J. W.
, Jr.
, and
Bogetti
,
T. A.
,
2013
, “
A Model to Characterize Acoustic Softening During Ultrasonic Consolidation
,”
J. Mater. Process. Technol.
,
213
(
11
), pp.
1835
1845
.10.1016/j.jmatprotec.2013.05.008
182.
Kelly
,
G. S.
,
Just
,
M. S.
, Jr.
,
Advani
,
S. G.
, and
Gillespie
,
J. W.
, Jr.
,
2014
, “
Energy and Bond Strength Development During Ultrasonic Consolidation
,”
J. Mater. Process. Technol.
,
214
(
8
), pp.
1665
1672
.10.1016/j.jmatprotec.2014.03.010
183.
Sriraman
,
M.
,
Gonser
,
M.
,
Fujii
,
H. T.
,
Babu
,
S.
, and
Bloss
,
M.
,
2011
, “
Thermal Transients During Processing of Materials by Very High Power Ultrasonic Additive Manufacturing
,”
J. Mater. Process. Technol.
,
211
(
10
), pp.
1650
1657
.10.1016/j.jmatprotec.2011.05.003
184.
Yang
,
Y.
,
Janaki Ram
,
G.
, and
Stucker
,
B.
,
2009
, “
Bond Formation and Fiber Embedment During Ultrasonic Consolidation
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4915
4924
.10.1016/j.jmatprotec.2009.01.014
185.
Hong
,
Y.
,
Zhou
,
J. G.
, and
Yao
,
D.
,
2014
, “
Porogen Templating Processes: An Overview
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031013
.10.1115/1.4026899
You do not currently have access to this content.