Laser surface texturing of plasma electrolytically oxidized aluminum 6061 alloy has been carried out through a controlled surface ablation under a high pressure nitrogen gas assistance. Morphological and metallurgical changes in the laser-treated region were examined using optical, scanning electron, and atomic force microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction phase analysis. The hydrophobicity of the textured surface was assessed through water droplet contact angle measurements. It was found that a dense layer with a nanotexture/microtexture is developed at the surface after the laser treatment process. The assessment of the surface characteristics reveals that a superhydrophobic surface results from the laser treatment process; in which case, high water droplet contact angles are measured over the treated surface, which can be explained by known models of texture-induced superhydrophobicity.

References

References
1.
Drozdowski
,
K.
,
Tofil
,
A.
,
Gontarz
,
A.
,
Pater
,
Z.
, and
Tomczak
,
J.
,
2013
, “
Manufacturing Process of Plane Rim From Aluminum Alloy
,”
Aircr. Eng. Aerosp. Technol.
,
85
(
6
), pp.
487
492
.10.1108/AEAT-10-2012-0179
2.
Gopi
,
K. R.
,
Mohandas
,
K. N.
,
Reddappa
,
H. N.
, and
Ramesh
,
M. R.
,
2013
, “
Characterization of as Cast and Heat Treated Aluminum 6061/Zircon Sand/Graphite Particulate Hybrid Composites
,”
Int. J. Eng. Adv. Technol.
,
2
(
5
), pp.
340
344
.
4.
Nie
,
X.
,
Meletis
,
E. I.
,
Jiang
,
J. C.
,
Leyland
,
A.
,
Yerokhin
,
A. L.
, and
Matthews
,
A.
,
2002
, “
Abrasive Wear/Corrosion Properties and TEM Analysis of Al2O3 Coatings Fabricated Using Plasma Electrolysis
,”
Surf. Coat. Technol.
,
149
(
2–3
), pp.
245
251
.10.1016/S0257-8972(01)01453-0
5.
Hussein
,
R. O.
,
Nie
,
X.
,
Northwood
,
D. O.
,
Yerokhin
,
A.
, and
Matthews
,
A.
,
2010
, “
Spectroscopic Study of Electrolytic Plasma and Discharging Behaviour During the Plasma Electrolytic Oxidation (PEO) Process
,”
J. Phys. D: Appl. Phys.
,
43
(
10
), pp.
105203
105216
.10.1088/0022-3727/43/10/105203
6.
Yilbas
,
B. S.
,
Khaled
,
M.
,
Abu-Dheir
,
N.
,
Aqeeli
,
N.
, and
Furquan
,
S. Z.
,
2013
, “
Laser Texturing of Alumina Surface for Improved Hydrophobicity
,”
Appl. Surf. Sci.
,
286
, pp.
161
170
.10.1016/j.apsusc.2013.09.040
7.
Yerokhin
,
A. L.
,
Nie
,
X.
,
Leyland
,
A.
,
Dowey
,
S. J.
, and
Matthews
,
A.
,
1999
, “
Review: Plasma Electrolysis for Surface Engineering
,”
Surf. Coat. Technol.
,
122
(2–3), pp.
73
93
.10.1016/S0257-8972(99)00441-7
8.
Han
,
J. T.
,
Xu
,
X. R.
, and
Cho
,
K. W.
,
2005
, “
Diverse Access to Artificial Superhydrophobic Surfaces Using Block Co-polymers
,”
Langmuir
,
21
(
15
), pp.
6662
6665
.10.1021/la051042+
9.
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Newton
,
M. I.
,
Chabrol
,
G.
, and
Perry
,
C. C.
,
2004
, “
Dual-Scale Roughness Produces Un-usually Water-Repellent Surfaces
,”
Adv. Mater.
,
16
(
21
), pp.
1929
1932
.10.1002/adma.200400315
10.
Hwang
,
H. S.
,
Lee
,
S. B.
, and
Park
,
I.
,
2010
, “
Fabrication of Rasp-Berry-Like Superhydrophobic Hollow Silica Particles
,”
Mater. Lett.
,
64
(
20
), pp.
2159
2162
.10.1016/j.matlet.2010.07.031
11.
Huang
,
Y. H.
,
Wu
,
J. T.
, and
Yang
,
S. Y.
,
2011
, “
Direct Fabricating Patterns Using Stamping Transfer Process With PDMS Mold of Hydrophobic Nanostructures on Surface of Micro Cavity
,”
Microelectron. Eng.
,
88
(
6
), pp.
849
854
.10.1016/j.mee.2010.08.006
12.
Yang
,
T.
,
Tian
,
H.
, and
Chen
,
Y.
,
2009
, “
Preparation of Superhydrophobic Silica Films With Honeycomb-Like Structure by Emulsion Method
,”
J. Sol-Gel Sci. Technol.
,
49
(
2
), pp.
243
246
.10.1007/s10971-008-1855-4
13.
Kinoshita
,
H.
,
Ogasahara
,
A.
,
Fukuda
,
Y.
, and
Ohmae
,
N.
,
2010
, “
Superhydrophobic/Superhydrophilic Micropatterning on a Carbon Nanotube Film Using a Laser Plasma-Type Hyperthermal Atom Beam Facility
,”
Carbon
,
48
(
15
), pp.
4403
4408
.10.1016/j.carbon.2010.07.056
14.
Latthe
,
S. S.
,
Imai
,
H.
,
Ganesan
,
V.
, and
Rao
,
A. V.
,
2009
, “
Super-Hydrophobic Silica Films by Sol-Gel Co-Precursor Method
,”
Appl. Surf. Sci.
,
256
(
1
), pp.
217
222
.10.1016/j.apsusc.2009.07.113
15.
Ma
,
M.
,
Mao
,
Y.
,
Gupta
,
M.
,
Gleason
,
K. K.
, and
Rutledge
,
G. C.
,
2005
, “
Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition
,”
Macromolecules
,
38
(
23
), pp.
9742
9748
.10.1021/ma0511189
16.
Yilbas
,
B. S.
, and
Bhushan
,
B.
,
2014
, “
Laser Treatment of Sintered Silicon Carbide Surface for Enhanced Hydrophobicity
,”
JOM
,
66
(
1
), pp.
87
94
.10.1007/s11837-013-0795-9
17.
Choi
,
S. C.
,
Kim
,
C. S.
,
Jhang
,
K.
, and
Shin
,
W.
,
2012
, “
Surface Characteristics of Aluminum 6061-T6 Subjected to Nd:YAG Pulsed-Laser Irradiation
,”
J. Mech. Sci. Technol.
,
26
(
7
), pp.
2163
2166
.10.1007/s12206-012-0537-x
18.
Nair
,
R.
,
Jiang
,
W.
, and
Molian
,
P.
,
2008
, “
Synthesis of Diamond-Like Carbon Coatings on Aluminum 6061 T-91 Substrates by Laser Sintering of Ultra-Nanocrystalline Diamond Powders
,”
Surf. Coat. Technol.
,
202
(
13
), pp.
2935
2944
.10.1016/j.surfcoat.2007.10.038
19.
Xu
,
F.
,
Guo
,
Y.
,
Gong
,
S.
,
Chen
,
L.
, and
Guo
,
L.
,
2012
, “
Microstructure and Mechanical Properties of 6061 Aluminum Alloy by Laser Welding With Filling Wire
,”
Adv. Mater. Res.
,
510
, pp.
585
589
.10.4028/www.scientific.net/AMR.510.585
20.
Wang
,
C. D.
,
Zhou
,
J. Z.
,
Huang
,
S.
,
Yang
,
X. D.
,
Xu
,
Z. C.
, and
Ruan
,
H. Y.
,
2011
, “
Study on the Improvement of Fatigue Crack Growth Performance of 6061-T6 Aluminum Alloy Subject to Laser Shot Peening
,”
Key Eng. Mater.
,
464
, pp.
391
394
.10.4028/www.scientific.net/KEM.464.391
21.
Gencalp Irizalp
,
S.
,
Saklakoglu
,
N.
,
Akman
,
E.
, and
Demir
,
A.
,
2014
, “
Pulsed Nd:YAG Laser Shock Processing Effects on Mechanical Properties of 6061-T6 Alloy
,”
Opt. Laser Technol.
,
56
, pp.
273
277
.10.1016/j.optlastec.2013.08.011
22.
Zhang
,
J.
,
Weckman
,
D. C.
, and
Zhou
,
Y.
,
2008
, “
Effects of Temporal Pulse Shaping on Cracking Susceptibility of 6061-T6 Aluminum Nd:YAG Laser Welds
,”
Weld. J.
,
87
(
1
), pp.
18s
30s
.
23.
Katipelli
,
L. R.
,
Agarwal
,
A.
, and
Dahotre
,
N. B.
,
2000
, “
Laser Surface Engineered TiC Coating on 6061 Al Alloy: Microstructure and Wear
,”
Appl. Surf. Sci.
,
153
(
2
), pp.
65
78
.10.1016/S0169-4332(99)00368-2
24.
Gomez-Rosas
,
G.
,
Rubio-Gonzalez
,
C.
,
Ocana
,
J. L.
,
Molpeceres
,
C.
,
Porro
,
J. A.
,
Morales
,
M.
,
Casillas
,
F. J.
,
Mora-Gonzalez
,
M.
, and
Chi-Moreno
,
W.
,
2007
, “
Laser Shock Processing to Improve Residual Stresses With and Without Paint Layer on 6061-T6 Aluminum Alloy
,”
Proceedings of the SPIE International Society for Optical Engineering Sixth Symposium Optics in Industry
, Monterrey, Mexico, Paper No. 64220U.
25.
Sanchez-Santana
,
U.
,
Rubio-Gonzalez
,
C.
,
Gomez-Rosas
,
G.
,
Ocana
,
J. L.
,
Molpeceres
,
C.
,
Porro
,
J.
, and
Morales
,
M.
,
2006
, “
Wear and Friction of 6061-T6 Aluminum Alloy Treated by Laser Shock Processing
,”
Wear
,
260
(
7–8
), pp.
847
854
.10.1016/j.wear.2005.04.014
26.
Sathyajith
,
S.
, and
Kalainathan
,
S.
,
2012
, “
Effect of Laser Shot Peening on Precipitation Hardened Aluminum Alloy 6061-T6 Using Low Energy Laser
,”
Opt. Lasers Eng.
,
50
(
3
), pp.
345
348
.10.1016/j.optlaseng.2011.11.002
27.
Khan
,
R. H. U.
,
Yerokhin
,
A.
,
Li
,
X.
,
Dong
,
H.
, and
Matthews
,
A.
,
2010
, “
Surface Characterization of DC Plasma Electrolytic Oxidation Treated 6082 Aluminum Alloy: Effect of Current Density and Electrolyte Concentration
,”
Surf. Coat. Technol.
,
205
(
6
), pp.
1679
1688
.10.1016/j.surfcoat.2010.04.052
28.
Parfenov
,
E. V.
,
Yerokhin
,
A. L.
, and
Matthews
,
A.
,
2007
, “
Impedance Spectroscopy Characterization of PEO Process and Coatings on Aluminum
,”
Thin Solid Films
,
516
(2–3), pp.
428
432
.10.1016/j.tsf.2007.06.169
29.
Yerokhin
,
A. L.
,
Nie
,
X.
,
Leyland
,
A.
, and
Matthews
,
A.
,
2000
, “
Characterisation of Oxide Films Produced by Plasma Electrolytic Oxidation on a Ti-6Al-4V Alloy
,”
Surf. Coat. Technol.
,
130
(2–3), pp.
195
206
.10.1016/S0257-8972(00)00719-2
30.
Yilbas
,
B. S.
,
Khaled
,
M.
, and
Karatas
,
C.
,
2011
, “
Laser Re-Melting of Alumina Tile Surfaces: Corrosion Testing in Aqueous Solution
,”
Corros. Eng. Sci. Technol.
,
46
(4), pp.
477
480
.10.1179/147842209X12476568584331
31.
Yilbas
,
B. S.
,
Akhtar
,
S.
, and
Karatas
,
C.
,
2011
, “
Laser Gas Assisted Melting of Pre-Prepared Alumina Surface Including TiC Particles at Surface
,”
Surf. Eng.
,
27
(6), pp.
470
476
.10.1179/1743294411Y.0000000023
32.
Yilbas
,
B. S.
,
Al-Aqeeli
,
N.
, and
Karatas
,
C.
,
2012
, “
Laser Control Melting of Alumina Surfaces With Presence of B4C Particles
,”
J. Alloys Compd.
,
539
, pp.
12
16
.10.1016/j.jallcom.2012.05.105
33.
Bityukov
,
V. K.
, and
Petrov
,
V. A.
,
2013
, “
Absorption Coefficient of Molten Aluminum Oxide in Semitransparent Spectral Range
,”
Appl. Phys. Res.
,
5
(
1
), pp.
51
71
.10.5539/apr.v5n1p51
34.
Hapke
,
B.
,
1995
,
Theory of Reflectance and Emittance Spectroscopy
,
Cambridge University
, Cambridge, UK.
35.
Yilbas
,
B. S.
,
Danisman
,
K.
, and
Yilbas
,
Z.
,
1991
, “
Measurement of Temperature-Dependent Reflectivity of Cu and Al in the Range 30–1000 °C
,”
Meas. Sci. Technol.
,
2
(7), pp.
668
674
.10.1088/0957-0233/2/7/016
36.
Huang
,
Z.
,
Cho
,
S.
,
Jiang
,
D.
, and
Tan
,
S.
,
1999
, “
Surface Nitridation of Al2O3 Based Composite by N2-HIP Post-Treatment
,”
J. Mater. Sci.
,
34
(9), pp.
2023
2027
.10.1023/A:1004591222040
37.
Yilbas
,
B. S.
,
Akhtar
,
S. S.
, and
Karatas
,
C.
,
2011
, “
Laser Carbonitriding of Alumina Surface
,”
Opt. Lasers Eng.
,
49
(
3
), pp.
341
350
.10.1016/j.optlaseng.2010.10.011
38.
Yilbas
,
B. S.
,
Karatas
,
C.
,
Arif
,
A. F. M.
, and
Abdul Aleem
,
B. J.
,
2009
, “
Laser Gas Assisted Nitriding of Alumina Surfaces
,”
Surf. Eng.
,
25
(
3
), pp.
235
240
.10.1179/174329409X397732
39.
Neumann
,
A. W.
, and
Good
,
R. J.
,
1979
,
Surface and Colloid Science
, Vol.
II
,
R. J.
Good
and
R. R.
Stromberg
, eds.,
Plenum Publishing
,
New York
.
40.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
41.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
42.
Anand
,
S.
,
Paxson
,
A. T.
,
Dhiman
,
R.
,
Smith
,
J. D.
, and
Varanasi
,
K. K.
,
2012
, “
Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces
,”
ACS Nano
,
6
(
11
), pp.
10122
10129
.10.1021/nn303867y
43.
Latthe
,
S. S.
,
Gurav
,
A. B.
,
Maruti
,
C. S.
, and
Vhatkar
,
R. S.
,
2012
, “
Recent Progress in Preparation of Superhydrophobic Surfaces: A Review
,”
J. Surf. Eng. Mater. Adv. Technol.
,
2
, pp.
76
94
.
44.
Kwon
,
H.-W.
,
Paxson
,
A. T.
,
Varanasi
,
K. K.
, and
Patankar
,
N. A.
,
2011
, “
Rapid Deceleration-Driven Wetting Transition During Pendant Drop Deposition on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
106
(
3
), p.
036102
.10.1103/PhysRevLett.106.036102
45.
Jung
,
Y. C.
, and
Bhushan
,
B.
,
2007
, “
Wetting Transition of Water Droplets on Superhydrophobic Patterned Surfaces
,”
Scr. Mater.
,
57
(
12
), pp.
1057
1060
.10.1016/j.scriptamat.2007.09.004
46.
Bhushan
,
B.
,
Jung
,
Y. C.
, and
Koch
,
K.
,
2009
, “
Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces
,”
Langmuir
,
25
(5), pp.
3240
3248
.10.1021/la803860d
47.
He
,
S.
,
Zheng
,
M.
,
Yao
,
L.
,
Yuan
,
X.
,
Li
,
M.
,
Ma
,
L.
, and
Shen
,
W.
,
2010
, “
Preparation and Properties of ZnO Nanostructures by Electrochemical Anodization Method
,”
Appl. Surf. Sci.
,
256
(
8
), pp.
2557
2562
.10.1016/j.apsusc.2009.10.104
48.
Zan
,
H.-W.
,
Yen
,
K.-H.
,
Liu
,
P.-K.
,
Ku
,
K.-H.
,
Chen
,
C.-H.
, and
Hwang
,
J.
,
2007
, “
Low-Voltage Organic Thin Film Transistors With Hydrophobic Aluminum Nitride Film as Gate Insulator
,”
Org. Electron.
,
8
, pp.
450
454
.10.1016/j.orgel.2006.12.001
You do not currently have access to this content.