Hot stamping of quenchenable ultra high strength steels currently represents a promising forming technology for the manufacturing of safety and crash relevant parts. For some applications, such as B-pillars which may undergo impact loading, it may be desirable to create regions of the part with softer and more ductile microstructure. In the article, a laboratory-scale hot stamped U-channel was produced with segmented die, which was heated by cartridge heaters and cooled by chilled water recirculation independently. It can be concluded that in order to satisfy tailored mechanical properties by introducing regions, which have an increased elongation for improved energy absorption, the minimum die temperature should be no less than 450 °C. Optical micrographs were used to verify the microstructure of the as-quenched phases with respect to the heated die temperatures. For the cooled die region, the microstructure was predominantly martensite for all the die temperatures interested. With the increase of heated die temperature, there was a decrease of Vickers hardness in the heated region due to the increasing volume fractions of bainite. The finite element (FE) model was developed to capture the overall hardness trends that were observed in the experiments. The trends between the simulations and experiments were very similar, with acceptable differences in the magnitude of Vickers hardness. The transition widths were measured and simulated and there was a quite good agreement between experiment and simulation with almost the same value of 10 mm by taking heat conduction into account.

References

References
1.
Drossel
,
W. G.
,
Pierschel
,
N.
,
Paul
,
A.
,
Katzfuß
,
K.
, and
Demuth
,
R.
,
2014
, “
Determination of the Active Medium Temperature in Media Based Press Hardening Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021013
.10.1115/1.4025812
2.
Tekkaya
,
A. E.
,
Karbasian
,
H.
,
Homberg
,
W.
, and
Kleiner
,
M.
,
2007
, “
Thermo-Mechanical Coupled Simulation of Hot Stamping Components for Process Design
,”
Prod. Eng. Res. Dev.
,
1
(
1
), pp.
85
89
.10.1007/s11740-007-0025-9
3.
N. N.,
2009
, “
Stahl-Informations-Zentrum, Stahl im Automobil, Leicht und sicher
,” www.stahl-info.de
4.
Karbasian
,
H.
, and
Tekkaya
,
A. E.
,
2010
, “
A Review on Hot Stamping
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2103
2118
.10.1016/j.jmatprotec.2010.07.019
5.
Bardelcik
,
A.
,
Worswick
,
M. J.
,
Winkler
,
S.
, and
Wells
,
M. A.
,
2012
, “
A Strain Rate Sensitive Constitutive Model for Quenched Boron Steel With Tailored Properties
,”
Int. J. Impact Eng.
,
50
, pp.
49
62
.10.1016/j.ijimpeng.2012.06.007
6.
Maikranz-Valentin
,
M.
,
Weidig
,
U.
,
Schoof
,
U.
,
Becker
,
H. H.
, and
Steinhoff
,
K.
,
2008
, “
Components With Optimized Properties due to Advanced Thermo-Mechanical Process Strategies in Hot Sheet Metal Forming
,”
Steel Res. Int.
,
79
(
2
), pp.
92
97
.10.2374/SRI07SP115-79-2008-92-97
7.
Bardelcik
,
A.
,
Salisbury
,
C. P.
,
Winkler
,
S.
,
Wells
,
M. A.
, and
Worswick
,
M. J.
,
2010
, “
Effect of Cooling Rate on the High Strain Rate Properties of Boron Steel
,”
Int. J. Impact Eng.
,
37
(6), pp.
694
702
.10.1016/j.ijimpeng.2009.05.009
8.
Labudde
,
T.
and
Bleck
,
W.
,
2009
, “
Formability Characterization of Press Hardened Steels
,”
2nd International Conference on Hot Sheet Metal Forming of High Performance Steels
,
Luleå
,
Sweden
, June 15–17, pp.
127
135
.
9.
Hedegaard
,
O.
,
2011
, “
Tempering of Hot-Formed Steel Using Induction Heating
,” M.S. thesis, Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, Sweden.
10.
Stöhr
,
T.
,
Lechler
,
J.
and
Merklein
,
M.
,
2009
, “
Investigations on Different Strategies for Influencing the Microstructural Properties With Respect to Partial Hot Stamping
,”
2nd International Conference on Hot Sheet Metal Forming of High Performance Steels
,
Luleå
,
Sweden
, June 15–17, pp.
273
281
.
11.
Naderi
,
M.
,
Ketabchi
,
M.
,
Abbasi
,
M.
, and
Bleak
,
W.
,
2011
, “
Semi-Hot Stamping as an Improved Process of Hot Stamping
,”
J. Mater. Sci. Technol.
,
27
(
4
), pp.
369
376
.10.1016/S1005-0302(11)60076-5
12.
Mori
,
K.
,
Maeno
,
T.
, and
Mongkolkaji
,
K.
,
2013
, “
Tailored Die Quenching of Steel Parts Having Strength Distribution Using Bypass Resistance Heating in Hot Stamping
,”
J. Mater. Process. Technol.
,
213
(
3
), pp.
508
514
.10.1016/j.jmatprotec.2012.10.005
13.
Casas
,
B.
,
Latre
,
D.
,
Rodriguez
,
N.
, and
Valls
,
I.
,
2008
, “
Tailor Made Tool Materials for the Present and Upcoming Tooling Solutions in Hot Sheet Metal Forming
,”
1st International Conference on Hot Sheet Metal Forming of High Performance Steels
,
Luleå
,
Sweden
, October 22–24, pp.
23
35
.
14.
Mori
,
K.
, and
Okuda
,
Y.
,
2010
, “
Tailor Die Quenching in Hot Stamping for Producing Ultra-High Strength Steel Formed Parts Having Strength Distribution
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
291
294
.10.1016/j.cirp.2010.03.107
15.
Maeno
,
T.
,
Mori
,
K.
, and
Nagai
,
T.
, 2014, “
Improvement in Formability by Control of Temperature in Hot Stamping of Ultra-High Strength Steel Parts
,”
CIRP Ann. Manuf. Technol.
(in press).10.1016/j.cirp.2014.03.005
16.
Stopp
,
R.
,
Schaller
,
L.
,
Lamprecht
,
K.
,
Keupp
,
E.
, and
Deinzer
,
G.
,
2007
, “
Warmblechumformung in der Automobil-Serienfertigung—Status, Trends, Potenziale
,”
2nd International Conference on Hot Sheet Metal Forming of High Performance Steels
,
Luleå
,
Sweden
, June 15–17, pp.
23
36
.
17.
Lamprecht
,
K.
, and
Deinzer
,
G.
,
2008
, “
Hot Sheet Metal Forming in Automotive Production
,”
2nd IWOTE
,
F.
Vollertsen
et al. , eds.,
Bremen
,
Germany
, Apr. 22–23, pp.
145
154
.
18.
Lechler
,
J.
,
Stöhr
,
T.
,
Kuppert
,
A.
, and
Merklein
,
M.
,
2010
, “
Basic Investigations on Hot Stamping of Tailor Welded Blanks Regarding the Manufacturing of Lightweight Components With Functionally Optimized Mechanical Properties
,”
NAMRC 38, Society of Manufacturing Engineers
, MI, May 26–28, pp.
593
600
.
19.
Hein
,
P.
, and
Wilsius
,
J. B.
,
2008
, “
Status and Innovation Trends in Hot Stamping of USIBOR 1500 P
,”
Steel Res. Int.
,
79
(
2
), pp.
85
91
.10.2374/SRI08SP010-79-2008-85-91
20.
Svec
,
T.
, and
Merklein
,
M.
,
2011
, “
Tailored Tempering–Heat transfer and Resulting Properties in Dependency of Tool Temperatures
,”
3rd International Conference on Hot Sheet Metal Forming of High-Performance Steel
,
Kassel
,
Germany
, June 13–16, pp.
21
29
.
21.
Banik
,
J.
,
Lenze
,
F. J.
,
Sikora
,
S.
, and
Laurenz
,
R.
,
2011
, “
Tailored Properties—a Pivotal Question for Hot Forming
,”
2nd International Conference on Hot Sheet Metal Forming of High Performance Steels
,
Luleå
,
Sweden
, June 15–17, pp.
13
20
.
22.
George
,
R.
,
Bardelcik
,
A.
, and
Worswick
,
M. J.
,
2012
, “
Hot Forming of Boron Steels Using Heated and Cooled Tooling for Tailored Properties
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2386
2399
.10.1016/j.jmatprotec.2012.06.028
23.
Eller
,
T. K.
,
Greve
,
L.
,
Andres
,
M. T.
,
Medricky
,
M.
,
Hatscher
,
A.
,
Meinders
,
V. T.
, and
Boogaard
,
A. H.
,
2014
, “
Plasticity and Fracture Modeling of Quench-Hardenable Boron Steel With Tailored Properties
,”
J. Mater. Process. Technol.
,
214
(
6
), pp.
1211
1227
.10.1016/j.jmatprotec.2013.12.015
24.
Tang
,
B. T.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Bariani
,
P. F.
,
2013
, “
Experimental and Numerical Investigations on Tailored Tempering Process of a U-Channel Component With Tailored Mechanical Properties
,”
AIP Conference Proceedings
,
Melboume, Australia
, Jan. 6–10, pp.
979
982
.
25.
Barcellona
,
A.
, and
Palmeri
,
D.
,
2009
, “
Effect of Plastic Hot Deformation on the Hardness and Continuous Cooling Transformations of 22MnB5 Microalloyed Boron Steel
,”
Metall. Mater. Trans. A
,
40
(
5
), pp.
1160
1174
.10.1007/s11661-009-9790-8
26.
Merklein
,
M.
, and
Svec
,
T.
,
2010
, “
Transformation Kinetics of the Hot Stamping Steel 22MnB5 in Dependency of the Applied Deformation on the Austenitic Microstructure
,”
IDDRG 2010 International Conference
,
R.
Kolleck
ed.,
Graz
,
Austria
, May 31–June 2, pp.
71
80
.
27.
Krauss
,
G.
,
1980
,
Principles of Heat Treatment of Steel
,
1st ed.
,
American Society for Metals
, Metals Park,
OH
.
28.
Sheil
,
E.
,
1935
, “
Anlaufzeit der austenitumwandlung
,”
Arch. Eisenhuettenwes.
,
12
, pp.
565
567
.
29.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I. General Theory
,”
J. Chem. Phys.
,
7
, pp.
1103
1112
.10.1063/1.1750380
30.
Cahn
,
J. W.
,
1956
, “
Transformation Kinetics During Continuous Cooling
,”
Acta Metall.
,
4
(6), pp.
572
575
.10.1016/0001-6160(56)90158-4
31.
Tang
,
B. T.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Bariani
,
P. F.
,
2014
, “
Numerical Modelling of the Tailored Tempering Process Applied to 22MnB5 Sheets
,”
Finite Elem. Anal. Des.
,
81
, pp.
69
81
.10.1016/j.finel.2013.11.009
32.
He
,
L. F.
,
Zhao
,
G. Q.
, and
Li
,
H. P.
,
2010
, “
Measurement and Analysis of Time-Temperature-Transformation Curves of Boron Steel 22MnB5
,”
Appl. Mech. Mater.
,
29–32
, pp.
484
489
.10.4028/www.scientific.net/AMM.29-32.484
33.
Åkerström
,
P.
, and
Oldenburg
,
M.
,
2006
, “
Austenite Decomposition During Press Hardening of a Boron Steel: Computer Simulation and Test
,”
J. Mater. Process. Technol.
,
174
(1–3), pp.
399
406
.10.1016/j.jmatprotec.2006.02.013
34.
Merklein
,
M.
,
Lechler
,
J.
, and
Stoehr
,
T.
,
2009
, “
Investigations on the Thermal Behavior of Ultra High Strength Boron Manganese Steels Within Hot Stamping
,”
Int. J. Mater. Form.
,
2
(1), pp.
259
262
.10.1007/s12289-009-0505-x
35.
ArcelorMittal,
2009
, “
USIBOR® 1500P CCT Diagram
,” ArcelorMittal.
36.
Riera
,
M. D.
,
Coussirat
,
M. G.
,
Guardo
,
A. J.
,
Valls
,
I.
, and
Casellas
,
D.
,
2009
, “
Simulation of Hot Stamping Processes
,”
J. Steel Relat. Mater.
,
7
, pp.
49
54
.
You do not currently have access to this content.