The existing chatter stability prediction algorithms fail in low-speed machining of difficult to cut alloys, unless process damping contributed by the tool flank face–finish surface contact is considered. This paper presents a new method in predicting the material dependent process damping coefficient from chatter free orthogonal cutting tests. An equivalent process damping coefficient of the dynamic system is estimated from the frequency domain decomposition (FDD) of the vibration signals measured during stable cutting tests. Subsequently, the specific indentation force of the workpiece material is identified from the process damping coefficients obtained over a range of cutting speeds. The specific indentation force coefficient is used in an explicit formula of process damping which considers the radius and clearance angle of the cutting edge. It is experimentally shown that when the proposed process damping model is included, the accuracy of chatter stability predictions in turning and milling improves significantly at low cutting speeds.

References

References
1.
Tobias
,
S. A.
,
1965
,
Machine-Tool Vibration
,
John Wiley
,
London
.
2.
Polacek
,
M.
, and
Tlusty
,
J.
,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,”
ASME Int. Res. Prod. Eng.
,
1
, pp.
465
474
.
3.
Smith
,
S.
, and
Tlusty
,
J.
,
1992
, “
Stabilizing Chatter by Automatic Spindle Speed Regulation
,”
CIRP Ann. Manuf. Technol.
,
41
(
1
), pp.
357
362
.10.1016/S0007-8506(07)61238-4
4.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations
,
Cambridge University Press
,
Cambridge, UK
.
5.
Sisson
,
T.
, and
Kegg
,
R.
,
1969
, “
An Explanation of Low-Speed Chatter Effects
,”
ASME J. Eng. Ind.
,
91
(4), pp.
951
958
.10.1115/1.3591778
6.
Wallace
,
P.
, and
Andrew
,
C.
,
1965
, “
Machining Forces: Some Effects of Tool Vibration
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
152
162
.10.1243/JMES_JOUR_1965_007_023_02
7.
Huang
,
C. Y.
, and
Wang
,
J. J. J.
,
2007
, “
Mechanistic Modeling of Process Damping in Peripheral Milling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
12
20
.10.1115/1.2335857
8.
Wu
,
D.
,
1989
, “
A New Approach of Formulating the Transfer Function for Dynamic Cutting Process
,”
ASME J. Eng. Ind.
,
111
(
1
), pp.
37
47
.10.1115/1.3188730
9.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
.10.1115/1.4024038
10.
Altintas
,
Y.
,
Montgomery
,
D.
, and
Budak
,
E.
,
1992
, “
Dynamic Peripheral Milling of Flexible Structures
,”
ASME J. Eng. Ind.
,
114
(
2
), pp.
137
145
.10.1115/1.2900688
11.
Elbestawi
,
M.
,
Ismail
,
F.
,
Du
,
R.
, and
Ullagaddi
,
B.
,
1994
, “
Modeling Machining Dynamics Including Damping in the Tool-Workpiece Interface
,”
ASME J. Eng. Ind.
,
116
(
4
), pp.
435
439
.10.1115/1.2902125
12.
Chiou
,
R. Y.
, and
Liang
,
S. Y.
,
1998
, “
Chatter Stability of a Slender Cutting Tool in Turning With Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
), pp.
315
327
.10.1016/S0890-6955(97)00079-5
13.
Peters
,
J.
,
Vanherck
,
P.
, and
Van Brussel
,
H.
,
1972
, “
The Measurement of the Dynamic Cutting Forces
,”
CIRP Ann.
, pp.
129
136
.
14.
Tlusty
,
J.
,
1978
, “
Analysis of the State of Research in Cutting Dynamics
,”
CIRP Ann.
,
27
(
2
), pp.
583
589
.
15.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
.10.1016/j.cirp.2008.03.048
16.
Budak
,
E.
, and
Tunc
,
L.
,
2009
, “
A New Method for Identification and Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), pp.
1
10
.10.1115/1.4000170
17.
Kurata
,
Y.
,
Merdol
,
D.
,
Altintas
,
Y.
,
Suzuki
,
N.
, and
Shamoto
,
E.
,
2010
, “
Chatter Stability in Turning and Milling With in Process Identified Process Damping
,”
J. Adv. Mech. Des., Syst. Manuf.
,
4
(
6
), pp.
1107
1118
.10.1299/jamdsm.4.1107
18.
Peeters
,
B.
, and
DeRoeck
,
G.
,
2001
, “
The Identification of Mechanical Systems: Stochastic System Identification for Operational Modal Analysis: A Review
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
4
), pp.
659
667
.10.1115/1.1410370
19.
Jin
,
X.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.10.1016/j.jmatprotec.2010.10.006
20.
Ranganath
,
S.
,
Campbell
,
A.
, and
Gorkiewicz
,
D.
,
2007
, “
A Model to Calibrate and Predict Forces in Machining With Honed Cutting Tools or Inserts
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
820
840
.10.1016/j.ijmachtools.2006.06.019
21.
Tunc
,
L.
, and
Budak
,
E.
,
2013
, “
Identification and Modeling of Process Damping in Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(2), pp.
1
12
.10.1115/1.4023708
22.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
,
Research Studies Press Ltd.
,
Letchworth, Hertfordshire, UK
.
23.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
.10.1016/S0007-8506(07)62342-7
24.
Insperger
,
T.
, and
Stepan
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems
,
Springer
,
New York
.
25.
Eksioglu
,
C.
,
Kilic
,
Z.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(6), pp.
1
13
.10.1115/1.4007622
26.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
,
2001
, “
Modal Identification of Output-Only Systems Using Frequency Domain Decomposition
,”
Smart Mater. Struct.
,
10
, pp.
441
445
.10.1088/0964-1726/10/3/303
27.
Albrecht
,
A.
,
Park
,
S.
,
Altintas
,
Y.
, and
Pritschow
,
G.
,
2005
, “
High Frequency Bandwidth Cutting Force Measurement in Milling Using Capacitance Displacement Sensors
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
993
1008
.10.1016/j.ijmachtools.2004.11.028
You do not currently have access to this content.