Aero-engine manufacturers are continuously striving to improve component performance and reliability while seeking to increase the efficiency of manufacturing to reduce costs. Efficiency gains by using higher rates of material removal, however, can be counter-productive if they give rise to surface anomalies that distort the material microstructure and reduce the resistance of the material to fatigue crack nucleation. This paper investigates the effect of hole making processes and parameters on surface integrity and the initiation of cracks from low-cycle fatigue (LCF). It reports the dependence of elevated temperature (600 °C) low-cycle fatigue performance of nickel alloy RR1000 from surfaces produced from hole making and subsequent surface conditioning. As-machined surfaces include a reference “damage-free” surface, and two distorted microstructures: (i) a white layer, produced to a depth of 5 and 10 μm and (ii) a distorted gamma prime (γ') structure, produced to a depth of 10 and 15 μm. The effect of shot peening damage-free and 10 μm deep white layer surfaces was also evaluated. It was found that the presence of white layer significantly reduced fatigue performance compared with that shown by the damage-free surface, regardless of whether the white layer was subsequently shot peened or not. In contrast, surfaces showing distorted γ' structures produced much less debit in fatigue life and only from a depth of 15 μm. These results have been rationalized from an examination of fracture surfaces and from measurement of residual stresses before and after fatigue testing. This research is of particular importance as it is among the few reports that quantify the effect of different levels of work piece surface integrity on the fatigue life of a nickel-based superalloy that has been developed for critical rotating components in aero-engine applications.

References

References
1.
Reed
,
R.
,
2006
,
The Superalloys Fundamentals and Applications
,
Cambridge University Press
, New York.10.1017/CBO9780511541285
2.
Turan
,
D.
,
Hunt
,
D.
, and
Knowles
,
D. M.
, “
Dwell Time Effect on Fatigue Crack Growth of RR1000 Superalloy
,”
Mater. Sci. Technol.
,
23
(
2
), pp.
183
188
.10.1179/174328407X154257
3.
Novovic
,
D.
,
Dewes
,
R. C.
,
Aspinwall
,
D. K.
,
Voice
,
W. E.
, and
Bowen
,
P.
,
2004
, “
The Effect of Machined Topography and Integrity on Fatigue Life
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
125
134
10.1016/j.ijmachtools.2003.10.018
4.
Axinte
,
D. A.
,
Andrews
,
P.
,
Li
,
W.
,
Gindy
,
N.
, and
Withers
,
P. J.
,
2006
, “
Turning of Advanced Ni Based Alloys Obtained via Powder Metallurgy Route
,”
Ann. CIRP
,
55
(
1
), pp.
117
120
.10.1016/S0007-8506(07)60379-5
5.
Mantle
,
A.
,
2001
, “
Surface Integrity of a High Speed Milled Gamma Titanium Aluminide
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
143
150
.10.1016/S0924-0136(01)00914-1
6.
Kwong
,
J.
,
Axinte
,
D. A.
, and
Withers
,
P. J.
,
2009
, “
The Sensitivity of Ni-Based Superalloy to Hole Making Operations: Influence of Process Parameters on Subsurface Damage and Residual Stress
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3968
3977
.10.1016/j.jmatprotec.2008.09.014
7.
Kwong
,
J.
,
Axinte
,
D. A.
,
Withers
,
P. J.
, and
Hardy
,
M. C.
,
2009
, “
Minor Cutting Edge–Workpiece Interactions in Drilling of an Advanced Nickel-Based Superalloy
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
645
658
.10.1016/j.ijmachtools.2009.01.012
8.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.10.1016/j.ijmachtools.2010.11.003
9.
Kitagawa
,
T.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
.10.1016/S0043-1648(96)07255-9
10.
Mitchell
,
R. J.
,
Hardy
,
M. C.
,
Preuss
,
M.
, and
Tin
,
S.
,
2004
,
Development of Y Prime Morphology in P/M Rotor Disc Alloys During Heat Treatment
,
Superalloys: The Minerals, Metals & Materials Society
, Champion, PA, pp.
361
370
.
11.
Mitchell
,
R. J.
,
Preuss
,
M.
,
Tin
,
S.
, and
Hardy
,
M. C.
,
2008
, “
The Influence of Cooling Rate From Temperatures Above the γ′ Solvus on Morphology, Mismatch and Hardness in Advanced Polycrystalline Nickel-Base Superalloys
,”
Mater. Sci. Eng., A
,
473
, pp.
158
165
.10.1016/j.msea.2007.04.098
12.
Ekmekci
,
B.
,
2007
, “
Residual Stresses and White Layer in Electric Discharge Machining (EDM)
,”
Appl. Surf. Sci.
,
253
(
23
), pp.
9234
9240
.10.1016/j.apsusc.2007.05.078
13.
Smith
,
S.
,
Melkote
,
S. N.
,
Lara-Curzio
,
E.
,
Watkins
,
T. R.
,
Allard
,
L.
, and
Riester
,
L.
,
2007
, “
Effect of Surface Integrity of Hard Turned AISI 52100 Steel on Fatigue Performance
,”
Mater. Sci. Eng., A
,
459
(
1–2
), pp.
337
346
.10.1016/j.msea.2007.01.011
14.
Herbert
,
C. R. J.
,
Axinte
,
D.
,
Hardy
,
M. C.
, and
Brown
,
P. D.
,
2012
, “
Investigation into the Characteristics of White Layers Produced in a Nickel-Based Superalloy From Drilling Operations
,”
Mach. Sci. Technol.: Int. J.
,
16
(
1
), pp.
40
52
.10.1080/10910344.2012.648520
15.
Österle
,
W.
,
Li
,
P. X.
, and
Nolze
,
G.
, “
Influence of Surface Finishing on Residual Stress Depth Profiles of a Coarse-Grained Nickel-Base Superalloy
,”
Mater. Sci. Eng., A
,
262
(
1–2
), pp.
308
311
.10.1016/S0921-5093(98)01018-1
16.
Ramesh
,
A.
,
Melkote
,
S. N.
,
Allard
,
L. F.
,
Riester
,
L.
, and
Watkins
,
T. R.
,
2005
, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng., A
,
390
(
1–2
), pp.
88
97
.10.1016/j.msea.2004.08.052
17.
Axinte
,
D. A.
, and
Andrews
,
P.
,
2007
, “
Some Considerations on Tool Wear and Workpiece Surface Quality of Holes Finished by Reaming or Milling in a Nickel-Base Superalloy
,”
Proc. Inst. Mech. Eng., Part B
,
221
, pp.
591
603
.10.1243/09544054JEM704
18.
Harrison
,
I. S.
,
Kurfess
,
T. R.
,
Oles
,
E. J.
, and
Singh
,
P. M.
,
2007
, “
Inspection of White Layer in Hard Turned Components Using Electrochemical Method
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
447
452
.10.1115/1.2540655
19.
Griffiths
,
B. J.
,
1987
, “
Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes
,”
ASME J. Tribol.
,
109
(
3
), pp.
525
530
10.1115/1.3261495
20.
Boothroyd
,
G.
,
1975
,
Fundamentals of Metal Machining and Machine Tools
,
Marcel Dekker
,
New York
.
21.
Alexandre
,
F.
,
2004
, “
Modeling the Optimum Grain Size on the Low Cycle Fatigue Life of a Ni Based Superalloy in the Presence of Two Possible Crack Initiation Sites
,”
Scr. Mater.
,
50
(
1
), pp.
25
30
.10.1016/j.scriptamat.2003.09.043
22.
Li
,
W.
,
Withers
,
P. J.
,
Axinte
,
D.
,
Preuss
,
M.
, and
Andrews
,
P.
,
2009
, “
Residual Stresses in Face Finish Turning of High Strength Nickel-Based Superalloy
,”
J. Mater. Process. Technol.
,
209
, pp.
4896
4902
.10.1016/j.jmatprotec.2009.01.012
23.
Li
,
W.
,
2008
, “
Machining-Induced Residual Stress on a High Strength Nickel-Base Powder Superalloy
,” Ph.D. thesis, University of Manchester, Manchester, UK.
24.
Wusatowska-Sarnek
,
A. M.
,
Dubiel
,
B.
,
Czyrska-Filemonowicz
,
A.
,
Bhowal
,
P. R.
,
Ben Salah
,
N.
, and
Klemberg-Sapieha
,
J. E.
,
2011
, “
Microstructural Characterization of the White Etching Layer in Nickel-Based Superalloy
,”
Metall. Mater. Trans. A
,
42
, pp.
3813
3825
.10.1007/s11661-011-0779-8
25.
Forest
,
A. V.
,
1936
, “
The Rate of Growth of Fatigue Cracks
,”
ASME J. Appl. Mech.
,
3
, pp.
23
25
.
26.
Withers
,
P. J.
,
2007
, “
Residual Stress and Its Role in Failure
,”
Rep. Prog. Phys.
,
70
, pp.
2211
2264
.10.1088/0034-4885/70/12/R04
27.
Gray
,
H.
,
Wagner
,
L.
, and
Lutjering
,
G.
,
1987
, “
Influence of Shot Peening Induced Surface Roughness, Residual Macrostress and Dislocation Density on the Elevated Temperature HCF-Properties of Ti Alloy
,”
Third International Conference on Shot Peening
, pp.
447
457
.
You do not currently have access to this content.