Fault diagnosis of rotating machinery is very important to guarantee the safety of manufacturing. Periodic impulsive fault features commonly appear in vibration measurements when local defects occur in the key components like rolling bearings and gearboxes. To extract the periodic impulses embedded in strong background noise, wavelet transform (WT) is suitable and has been widely used in analyzing these nonstationary signals. However, a few limitations like shift-variance and fixed frequency partition manner of the dyadic WT would weaken its effectiveness in engineering application. Compared with dyadic WT, the dual-tree rational dilation complex wavelet transform (DT-RADWT) enjoys attractive properties of better shift-invariance, flexible time-frequency (TF) partition manner, and tunable oscillatory nature of the bases. In this article, an impulsive fault features extraction technique based on the DT-RADWT is proposed. In the routine of the proposed method, the optimal DT-RADWT basis is constructed dynamically and adaptively based on the input signal. Additionally, the sensitive wavelet subband is chosen using kurtosis maximization principle to reveal the potential weak fault features. The proposed method is applied on engineering applications for defects detection of the rolling bearing and gearbox. The results show that the proposed method performs better in extracting the fault features than dyadic WT and empirical mode decomposition (EMD), especially when the incipient fault features are embedded in the frequency transition bands of the dyadic WT.

References

References
1.
Rao
,
B. K. N.
,
Pai
,
P. S.
, and
Nagabhushana
,
T. N.
,
2012
, “
Failure Diagnosis and Prognosis of Rolling-Element Bearings Using Artificial Neural Networks: A Critical Overview
,”
J. Phys.: Conf. Ser.
,
364
, p.
012023
.10.1088/1742-6596/364/1/012023
2.
Aherwar
,
A.
,
2012
, “
An Investigation on Gearbox Fault Detection Using Vibration Analysis Techniques: A Review
,”
Aust. J. Mech. Eng.
,
10
(
2
), pp. 169–184.10.7158/M11-830.2012.10.2
3.
Randall
,
R. B.
,
2011
, Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications,
John Wiley & Sons
, West Sussex, UK.10.1002/9780470977668
4.
Zheng
,
G. T.
, and
Wang
,
W. J.
,
2001
, “
A New Cepstral Analysis Procedure of Recovering Excitations for Transient Components of Vibration Signals and Applications to Rotating Machinery Condition Monitoring
,”
ASME J. Vib. Acoust.
,
123
(
2
), pp.
222
229
.10.1115/1.1356696
5.
He
,
Z.
,
Chen
,
J.
, and
Wang
,
T.
,
2010
,
Theories and Applications of Machinery Fault Diagnosis
,
Higher Education Press
,
Beijing, People's Republic of China
.
6.
Gao
,
R. X.
, and
Yan
,
R. Q.
,
2011
,
Wavelets: Theory and Applications for Manufacturing
,
Springer
, New York.
7.
Bracewell
,
R. N.
, and
Bracewell
,
R.
,
1978
,
The Fourier Transform and its Applications
,
McGraw-Hill
,
New York
.
8.
Satish
,
L.
,
1998
, “
Short-Time Fourier and Wavelet Transforms for Fault Detection in Power Transformers During Impulse Tests
,”
IEE Proc.-Sci. Meas. Technol.
,
145
(
2
), pp.
77
84
.10.1049/ip-smt:19981576
9.
He
,
Q. B.
,
Li
,
P.
, and
Kong
,
F. R.
,
2012
, “
Rolling Bearing Localized Defect Evaluation by Multiscale Signature via Empirical Mode Decomposition
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061013
.10.1115/1.4006754
10.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London A
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
11.
Yuan
,
J.
,
He
,
Z.
,
Ni
,
J.
,
Brzezinski
,
A. J.
, and
Zi
,
Y.
,
2013
, “
Ensemble Noise-Reconstructed Empirical Mode Decomposition for Mechanical Fault Detection
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021011
.10.1115/1.4023138
12.
Yan
,
R. Q.
, and
Gao
,
R. X.
,
2008
, “
Rotary Machine Health Diagnosis Based on Empirical Mode Decomposition
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021007
.10.1115/1.2827360
13.
Xiang
,
L.
, and
Hu
,
A.
,
2012
, “
New Feature Extraction Method for the Detection of Defects in Rolling Element Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
084501
.10.1115/1.4006713
14.
Wang
,
Y. X.
,
He
,
Z. J.
, and
Zi
,
Y. Y.
,
2010
, “
A comparative Study on the Local Mean Decomposition and Empirical Mode Decomposition and Their Applications to Rotating Machinery Health Diagnosis
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021010
.10.1115/1.4000770
15.
Flandrin
,
P.
,
Rilling
,
G.
, and
Goncalves
,
P.
,
2004
, “
Empirical Mode Decomposition as a Filter Bank
,”
IEEE Signal Process. Lett.
,
11
(
2
), pp.
112
114
.10.1109/LSP.2003.821662
16.
Yuan
,
J.
,
2011
, “
Inner Production Principle of Mechanical Fault Diagnosis and Feature Extraction Based on Multiwavelet Transform
,” Xi'an Jiaotong University, Xi'an, P. R. China.
17.
Daubechies
,
I.
,
1992
,
Ten Lectures on Wavelets
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
18.
Holm-Hansen
,
B. T.
,
Gao
,
R. X.
, and
Zhang
,
L.
,
2004
, “
Customized Wavelet for Bearing Defect Detection
,”
ASME J. Dyn. Meas. Control
,
126
(
4
), pp.
740
745
.10.1115/1.1850534
19.
Yan
,
R.
, and
Gao
,
R. X.
,
2011
, “
Impact of Wavelet Basis on Vibration Analysis for Rolling Bearing Defect Diagnosis
,”
IEEE Instrumentation and Measurement Technology Conference
(
I2MTC
), Binjiang, P. R. China, May 10–12, pp.
1
4
.10.1109/IMTC.2011.5944209
20.
Yan
,
R. Q.
,
Gao
,
R. X.
, and
Chen
,
X. F.
,
2014
, “
Wavelets for Fault Diagnosis of Rotary Machines: A Review With Applications
,”
Signal Process.
,
96
, pp.
1
15
.10.1016/j.sigpro.2013.04.015
21.
Al-Raheem
,
K. F.
,
Roy
,
A.
,
Ramachandran
,
K. P.
,
Harrison
,
D. K.
, and
Grainger
,
S.
,
2008
, “
Application of the Laplace-Wavelet Combined With ANN for Rolling Bearing Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
130
(
5
), p.
051007
.10.1115/1.2948399
22.
Wang
,
W. J.
, and
Mcfadden
,
P. D.
,
1996
, “
Application of Wavelets to Gearbox Vibration Signals for Fault Detection
,”
J. Sound Vib.
,
192
(
5
), pp.
927
939
.10.1006/jsvi.1996.0226
23.
Jena
,
D. P.
,
Panigrahi
,
S. N.
, and
Kumar
,
R.
,
2012
, “
Gear Fault Identification and Localization Using Analytic Wavelet Transform of Vibration Signal
,”
Measurement
,
46
(
3
), pp.
1115
1124
.10.1016/j.measurement.2012.11.010
24.
Sweldens
,
W.
,
1996
, “
The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets
,”
Appl. Comput. Harmonic Anal.
,
3
(
2
), pp.
186
200
.10.1006/acha.1996.0015
25.
Jiang
,
H. K.
,
He
,
A. J.
,
Duan
,
C. D.
, and
Cheng
,
P.
,
2006
, “
Gearbox Fault Diagnosis Using Adaptive Redundant Lifting Scheme
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
1992
2006
.10.1016/j.ymssp.2005.06.001
26.
He
,
Z. J.
,
Cao
,
H. R.
,
Li
,
Z.
,
Zi
,
Y. Y.
, and
Chen
,
X. F.
,
2009
, “
The Principle of Second Generation Wavelet for Milling Cutter Breakage Detection
,”
Sci. China Ser. E
,
52
(
5
), pp.
1312
1322
.10.1007/s11431-008-0298-z
27.
Gao
,
L.
,
Yang
,
Z.
,
Cai
,
L.
,
Wang
,
H.
, and
Chen
,
P.
,
2010
, “
Roller Bearing Fault Diagnosis Based on Nonlinear Redundant Lifting Wavelet Packet Analysis
,”
Sensors
,
11
(
1
), pp.
260
277
.10.3390/s110100260
28.
Tafreshi
,
R.
,
Sassani
,
F.
,
Ahmadi
,
H.
, and
Dumont
,
G.
,
2009
, “
An Approach for the Construction of Entropy Measure and Energy Map in Machine Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
131
(
2
), p.
024501
.10.1115/1.2980367
29.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2009
, “
A Combination of WKNN to Fault Diagnosis of Rolling Element Bearings
,”
ASME J. Vib. Acoust.
,
131
(
6
), p.
064502
.10.1115/1.4000478
30.
Peng
,
Z. K.
,
Jackson
,
M. R.
,
Rongong
,
J. A.
,
Chu
,
F. L.
, and
Parkin
,
R. M.
,
2009
, “
On the Energy Leakage of Discrete Wavelet Transform
,”
Mech. Syst. Signal Process.
,
23
(
2
), pp.
330
343
.10.1016/j.ymssp.2008.05.014
31.
Antoni
,
J.
, and
Randall
,
R. B.
,
2006
, “
The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
308
331
.10.1016/j.ymssp.2004.09.002
32.
Liu
,
H.
,
Huang
,
W.
,
Wang
,
S.
, and
Zhu
,
Z.
,
2014
, “
Adaptive Spectral Kurtosis Filtering Based on Morlet Wavelet and its Application for Signal Transients Detection
,”
Signal Process.
,
96
, pp.
118
124
.10.1016/j.sigpro.2013.05.013
33.
Antoni
,
J.
,
2007
, “
Fast Computation of the Kurtogram for the Detection of Transient Faults
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
108
124
.10.1016/j.ymssp.2005.12.002
34.
Bayram
,
I.
, and
Selesnick
,
I. W.
,
2011
, “
A Dual-Tree Rational-Dilation Complex Wavelet Transform
,”
IEEE Trans. Signal Process.
,
59
(
12
), pp.
6251
6256
.10.1109/TSP.2011.2166389
35.
Mallat
,
S.
,
2008
,
A Wavelet Tour of Signal Processing: The Sparse Way
,
Academic Press
, New York.
36.
Szu
,
H.
,
Sheng
,
Y.
, and
Chen
,
J.
,
1992
, “
Wavelet Transform as a Bank of the Matched Filters
,”
Appl. Opt.
,
31
(
17
), pp.
3267
3277
.10.1364/AO.31.003267
37.
Wickerhauser
,
M. V.
,
1991
, “
Lectures on Wavelet Packet Algorithms
,” Lecture Notes, INRIA.
38.
Hilton
,
M. L.
,
1997
, “
Wavelet and Wavelet Packet Compression of Electrocardiograms
,”
IEEE Trans. Biomed. Eng.
,
44
(
5
), pp.
394
402
.10.1109/10.568915
39.
Kingsbury
,
N. G.
,
1998
, “
The Dual-Tree Complex Wavelet Transform: A New Technique for Shift Invariance and Directional Filters
,”
8th IEEE DSP Workshop
,
Bryce Canyon, Utah
, Vol.
8
.
40.
Selesnick
,
I. W.
,
Baraniuk
,
R. G.
, and
Kingsbury
,
N. C.
,
2005
, “
The Dual-Tree Complex Wavelet Transform
,”
IEEE Signal Process. Mag.
,
22
(
6
), pp.
123
151
.10.1109/MSP.2005.1550194
41.
Wang
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2010
, “
Enhancement of Signal Denoising and Multiple Fault Signatures Detecting in Rotating Machinery Using Dual-Tree Complex Wavelet Transform
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
119
137
.10.1016/j.ymssp.2009.06.015
42.
Kingsbury
,
N.
,
2001
, “
Complex Wavelets for Shift Invariant Analysis and Filtering of Signals
,”
Appl. Comput. Harmonic Anal.
,
10
(
3
), pp.
234
253
.10.1006/acha.2000.0343
43.
Chen
,
B.
,
Zhang
,
Z.
,
Sun
,
C.
,
Li
,
B.
,
Zi
,
Y.
, and
He
,
Z.
,
2012
, “
Fault Feature Extraction of Gearbox by Using Overcomplete Rational Dilation Discrete Wavelet Transform on Signals Measured From Vibration Sensors
,”
Mech. Syst. Signal Process.
,
33
, pp.
275
298
.10.1016/j.ymssp.2012.07.007
44.
Yu
,
R.
,
2009
, “
A New Shift-Invariance of Discrete-Time Systems and Its Application to Discrete Wavelet Transform Analysis
,”
IEEE Trans. Signal Process.
,
57
(
7
), pp.
2527
2537
.10.1109/TSP.2009.2019232
45.
He
,
W.
,
Zi
,
Y.
,
Chen
,
B.
,
Wang
,
S.
, and
He
,
Z.
,
2013
, “
Tunable Q-Factor Wavelet Transform Denoising With Neighboring Coefficients and Its Application to Rotating Machinery Fault Diagnosis
,”
Sci. China Tech. Sci.
,
56
(
8
), pp.
1956
1965
.10.1007/s11431-013-5271-9
46.
Bayram
,
I.
, and
Selesnick
,
I. W.
,
2009
, “
Frequency-Domain Design of Overcomplete Rational-Dilation Wavelet Transforms
,”
IEEE Trans. Signal Process.
,
57
(
8
), pp.
2957
2972
.10.1109/TSP.2009.2020756
47.
Blu
,
T.
,
1993
, “
Iterated Filter Banks With Rational Rate Changes Connection With Discrete Wavelet Transforms
,”
IEEE Trans. Signal Process.
,
41
(
12
), pp.
3232
3244
.10.1109/78.258070
48.
Niu
,
L. K.
,
Cao
,
H. R.
,
He
,
Z. J.
, and
Li
,
Y. M.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.10.1115/1.4027334
You do not currently have access to this content.