The fatigue life of ultrasonically welded lithium-ion battery tab joints is studied for electric and hybrid–electric vehicle (EV and HEV) applications. Similar to metallic materials, the electrical resistance of these ultrasonic welds strongly depends on their quality and the crack growth under fatigue loading. A fatigue life model is developed using the continuum damage mechanics (CDM) formulation, where the damage variable is defined using the electrical resistance of ultrasonic welds. Fatigue tests under various loading conditions are conducted with aluminum–copper battery tab joints made under various ultrasonic welding conditions. It is shown that the electrical resistance of ultrasonic welds increases characteristically during the fatigue life test. There is a threshold for the damage variable, after which the ultrasound welds fail rapidly. Due to welding process variation, welds made under the same process settings may have different fatigue performance. This quality difference may be classified using two parameters estimated from the fatigue life model. By monitoring the electrical resistance, it is possible to predict the remaining life of ultrasonically welded battery tab joints using only a portion of the fatigue test data. The prediction is more reliable by incorporating data beyond the half-life of the joints during the fatigue test.

References

References
1.
Eom
,
S. W.
,
Kim
,
M. K.
,
Kim
,
I. J.
,
Moon
,
S. I.
,
Sun
,
Y. K.
, and
Kim
,
H. S.
,
2007
, “
Life Prediction and Reliability Assessment of Lithium Secondary Batteries
,”
J. Power Sources
,
174
(
2
), pp.
954
958
.10.1016/j.jpowsour.2007.06.208
2.
Meissner
,
E.
, and
Richter
,
G.
,
2005
, “
The Challenge to the Automotive Battery Industry: The Battery has to Become an Increasingly Integrated Component Within the Vehicle Electric Power System
,”
J. Power Sources
,
144
(
2
), pp.
438
460
.10.1016/j.jpowsour.2004.10.031
3.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2010
, “
Joining Technologies for Automotive Lithium-Ion Battery Manufacturing: A Review
,”
ASME
International Manufacturing Science and Engineering Conference
, Erie, PA, Oct. 12–15, Paper No. MSEC2010-34168, pp.
541
549
.10.1115/MSEC2010-34168
4.
Ponnappan
,
R.
, and
Ravigururajan
,
T.
,
2004
, “
Contact Thermal Resistance of Li-Ion Cell Electrode Stack
,”
J. Power Sources
,
129
(
1
), pp.
7
13
.10.1016/j.jpowsour.2003.11.006
5.
Ahmed
,
N.
,
2005
,
New Developments in Advanced Welding
,
CRC Press
,
Boca Raton, FL
.
6.
Grewell
,
D. A.
,
Benatar
,
A.
, and
Park
,
J. B.
,
2003
,
Plastics and Composites Welding Handbook
. Vol.
10
,
Hanser Gardner Publications
,
Cincinatti, OH
.
7.
Hetrick
,
E.
,
Baer
,
J.
,
Zhu
,
W.
,
Reatherford
,
L.
,
Grima
,
A.
,
Scholl
,
D.
,
Wilkosz
,
D.
,
Fatima
,
S.
, and
Ward
,
S.
,
2009
, “
Ultrasonic Metal Welding Process Robustness in Aluminum Automotive Body Construction Applications
,”
Weld. J.
,
88
(
7
), pp.
149
158
.
8.
Ram
,
G. D. J.
,
Robinson
,
C.
,
Yang
,
Y.
, and
Stucker
,
B.
,
2007
, “
Use of Ultrasonic Consolidation for Fabrication of Multi-Material Structures
,”
Rapid Prototyping J.
,
13
(
4
), pp.
226
235
.10.1108/13552540710776179
9.
MacDowell
,
D. L.
,
1997
, “
Applications of Continuum Damage Mechanics to Fatigue and Fracture
,”
Symposium on Applications of Continuum Damage Mechanics to Fatigue and Fractures
, Orlando, FL, May 21, West Conshohocken, PA, Paper No. STP1315-EB.
10.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
,
2013
, “
Dynamic Response of Battery Tabs Under Ultrasonic Welding
,”
J. Manuf. Sci. Eng.
,
135
(5), p. 051013.10.1115/1.4024535
11.
Kang
,
B.
,
Cai
,
W.
, and
Tan
,
C. A.
, 2014, “Vibrational Energy Loss Analysis in Battery Tab Ultrasonic Welding,”
J. Manuf. Processes
,
16
(2), p. 218–232.10.1016/j.jmapro.2013.10.008
12.
Kim
,
T.
,
Yum
,
J.
,
Hu
,
S.
,
Spicer
,
J.
, and
Abell
,
J.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Annu. Manuf. Technol.
,
60
(
1
), pp.
17
20
.10.1016/j.cirp.2011.03.016
13.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
,
Abell
,
J. A.
, and
Li
,
J.
,
2013
, “
Characterization of Joint Quality in Ultrasonic Welding of Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021004
.10.1115/1.4023364
14.
Coffin
,
J.
,
U. S. A. E.
Commission
, and
G. E.
Company
,
1953
,
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,
Knolls Atomic Power Laboratory
,
Schenectady, NY
.
15.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.10.1016/S0142-1123(97)00081-9
16.
Manson
,
S. S.
, and
U. S. N. A. C. f.
Aeronautics
,
1953
,
Behavior of Materials Under Conditions of Thermal Stress
,
National Advisory Committee for Aeronautics
,
Washington, DC
.
17.
Alves
,
M.
,
Yu
,
J.
, and
Jones
,
N.
,
2000
, “
On the Elastic Modulus Degradation in Continuum Damage Mechanics
,”
Comput. Struct.
,
76
(
6
), pp.
703
712
.10.1016/S0045-7949(99)00187-X
18.
Fargione
,
G.
,
Geraci
,
A.
,
La Rosa
,
G.
, and
Risitano
,
A.
,
2002
, “
Rapid Determination of the Fatigue Curve by the Thermographic Method
,”
Int. J. Fatigue
,
24
(
1
), pp.
11
19
.10.1016/S0142-1123(01)00107-4
19.
Lemaitre
,
J.
, and
Dufailly
,
J.
,
1987
, “
Damage Measurements
,”
Eng. Fract. Mech.
,
28
(
5
), pp.
643
661
.10.1016/0013-7944(87)90059-2
20.
Yang
,
L.
, and
Fatemi
,
A.
,
1998
, “
Cumulative Fatigue Damage Mechanisms and Quantifying Parameters: A Literature Review
,”
J. Test. Eval.
,
26
(
2
), pp.
89
100
.10.1520/JTE11978J
21.
Chung
,
D.
,
2001
, “
Structural Health Monitoring by Electrical Resistance Measurement
,”
Smart Mater. Struct.
,
10
(
4
), pp.
624
636
.10.1088/0964-1726/10/4/305
22.
Constable
,
J. H.
, and
Sahay
,
C.
,
1992
, “
Electrical Resistance as an Indicator of Fatigue
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
6
), pp.
1138
1145
.10.1109/33.206940
23.
Charrier
,
J.
, and
Roux
,
R.
,
1991
, “
Evolution of Damage Fatigue by Electrical Measure on Smooth Cylindrical Specimens
,”
Nondestr. Test. Eval.
,
6
(
2
), pp.
113
124
.10.1080/10589759108953132
24.
Starke
,
P.
,
Walther
,
F.
, and
Eifler
,
D.
,
2006
, “
PHYBAL—A New Method for Lifetime Prediction Based on Strain, Temperature and Electrical Measurements
,”
Int. J. Fatigue
,
28
(
9
), pp.
1028
1036
.10.1016/j.ijfatigue.2005.07.050
25.
Starke
,
P.
,
Walther
,
F.
, and
Eifler
,
D.
,
2007
, “
Fatigue Assessment and Fatigue Life Calculation of Quenched and Tempered SAE 4140 Steel Based on Stress–Strain Hysteresis, Temperature and Electrical Resistance Measurements
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
11
), pp.
1044
1051
.10.1111/j.1460-2695.2007.01174.x
26.
Sun
,
B.
, and
Guo
,
Y.
,
2004
, “
High-Cycle Fatigue Damage Measurement Based on Electrical Resistance Change Considering Variable Electrical Resistivity and Uneven Damage
,”
Int. J. Fatigue
,
26
(
5
), pp.
457
462
.10.1016/j.ijfatigue.2003.10.004
27.
Lemaître
,
J.
, and
Chaboche
,
J.-L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University
,
Cambridge, UK
.
28.
Xiao
,
Y. C.
,
Li
,
S.
, and
Gao
,
Z.
,
1998
, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
,
20
(
7
), pp.
503
508
.10.1016/S0142-1123(98)00005-X
29.
Marco
,
S.
, and
Starkey
,
W.
,
1954
, “
A Concept of Fatigue Damage
,”
ASME
,
76
(
4
), pp.
627
632
.
30.
Manson
,
S.
,
1980
, “
Some Useful Concepts for the Designer in Treating Cumulative Fatigue Damage at Elevated Temperatures
,”
Mech. Behav. Mater.
,
1
, pp. 13–45.10.1016/B978-1-4832-8414-9.50012-2
31.
Chaboche
,
J.
,
1988
, “
Continuum Damage Mechanics. I—General Concepts. II—Damage Growth, Crack Initiation, and Crack Growth
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
59
72
.10.1115/1.3173661
32.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Problems in Least Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
33.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
You do not currently have access to this content.