In this article, a three-dimensional (3D) transient unified model is developed to simulate the transport phenomena during the cold metal transfer (CMT) spot welding process of 1 mm thick aluminum AA6061-T6 and 1 mm thick galvanized mild steel (i.e., AISI 1009). The events of the CMT process are simulated, including arc generation and evolution; up-and-down movement of electrode, droplet formation and dipping into the weld pool; weld pool dynamics; zinc evaporation, and zinc vapor diffusion in the arc. The effects of the gap between the two workpieces and effects of zinc vapor evaporated from the steel surface on CMT process are studied. The results show that the arc temperature, velocity, and pressure keep changing during the CMT process, which is related to the variations of welding current, arc length, and zinc evaporation. It is found that the zinc evaporation leads to the extremely high arc pressure and the upward flow of zinc vapor near the steel surface, which would induce the arc instability and provide the drag force for the droplet impingement. The presence of the gap between the two workpieces can improve the expansion of the arc plasma, resulting in the smaller arc pressure and the more intensive upward flow of zinc vapor from the steel surface. The phenomena observed in the experiment are in agreement with the modeling results.

References

References
1.
Holliday
,
D. B.
,
1990
, “
Gas–Metal Arc Welding, ASM Handbook
,”
Welding, Brazing, and Soldering
, Vol.
6
, D. L. Olson, T. A. Siewert, S. Liu, G. R. Edwards, eds.,
ASM International
, Materials Park, OH, pp.
180
185
.
2.
Fronius USA LLC
,
2004
,
The CMT Process—A Revolution in Materials-Joining Technology
,
Fronius USA LLC
,
Brighton, MI
.
3.
Fronius USA LLC
,
2007
,
CMT: Cold Metal Transfer, MIG/MAG dip-transfer arc process
,
Fronius USA LLC
,
Brighton, MI
.
4.
Ucsnik
,
S.
,
Scheerer
,
M.
,
Zaremba
,
S.
, and
Pahr
,
D. H.
,
2010
, “
Experimental Investigation of a Novel Hybrid Metal–Composite Joining Technology
,”
Compos.Part A: Appl. Sci. Manuf.
,
41
, pp.
369
374
.10.1016/j.compositesa.2009.11.003
5.
Sun
,
Z.
, and
Ion
,
J. C.
,
1995
, “
Laser Welding of Dissimilar Metal Combinations
,”
J. Mater. Sci.
,
30
, pp.
4205
4214
.10.1007/BF00361499
6.
Sun
,
Z.
, and
Karppi
,
R.
,
1996
, “
The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview
,”
J. Mater. Process. Technol.
,
59
, pp.
257
267
.10.1016/0924-0136(95)02150-7
7.
Bruckner
,
J.
,
2005
, “
Cold Metal Transfer has a Future Joining Steel to Aluminum
,”
Weld. J.
,
84
, pp.
38
40
.
8.
Zhang
,
H. T.
,
Feng
,
J. C.
,
He
,
P.
,
Zhang
,
B. B.
,
Chen
,
J. M.
, and
Wang
,
L.
,
2009
, “
The Arc Characteristics and Metal Transfer Behavior of Cold Metal Transfer and its Use in Joining Aluminum to Zinc-Coated Steel
,”
Mater. Sci. Eng., A
,
499
, pp.
111
113
.10.1016/j.msea.2007.11.124
9.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Lei
,
H. Y.
,
Wang
,
P. C.
,
Lai
,
X. M.
, and
Chen
,
G. L.
,
2013
, “
Dissimilar Metal Spot Welding System of Light Metal and Coated Steel and Welding Method Thereof
,” Patent No. 201010613175.1 (Granted).
10.
Feng
,
J.
,
Zhang
,
H.
, and
He
,
P.
,
2009
, “
The CMT Short-Circuiting Metal Transfer Process and its Use in Thin Aluminum Sheets Welding
,”
Mater. Des.
,
30
, pp.
1850
1852
.10.1016/j.matdes.2008.07.015
11.
Pickin
,
C. G.
, and
Young
,
K.
,
2006
, “
Evaluation of Cold Metal Transfer (CMT) Process for Welding Aluminum Alloy
,”
Sci. Technol. Weld. Joining
,
11
, pp.
583
585
.10.1179/174329306X120886
12.
Pires
,
I.
,
Quintino
,
L.
,
Amaral
,
V.
, and
Rosado
,
T.
,
2010
, “
Reduction of Fume and Gas Emissions Using Innovative Gas Metal Arc Welding Variants
,”
Int. J Adv. Manuf. Technol.
,
50
, pp.
557
567
.10.1007/s00170-010-2551-4
13.
Rao
,
Z. H.
,
Zhou
,
J.
,
Liao
,
S. M.
, and
Tsai
,
H. L.
,
2010
, “
Three-Dimensional Modeling of Transport Phenomena and Their Effect on the Formation of Ripples in Gas Metal Arc Welding
,”
J. Appl. Phys.
,
107
, p.
054905
.10.1063/1.3326163
14.
Rao
,
Z. H.
,
Liao
,
S. M.
, and
Tsai
,
H. L.
,
2010
, “
Effects of Shielding Gas Compositions on Arc Plasma and Metal Transfer in Gas Metal Arc Welding
,”
J. Appl. Phys.
,
107
, p.
044902
.10.1063/1.3291121
15.
Haidar
,
J.
,
1998
, “
Prediction of Metal Droplet Formation in Gas Metal Arc Welding II
,”
J. Appl. Phys.
,
84
, pp.
3530
3540
.10.1063/1.368528
16.
Fan
,
H. G.
, and
Kovacevic
,
R.
,
2004
, “
A Unified Model of Transport Phenomena in Gas Metal Arc Welding Including Electrode, Arc Plasma and Molten Pool
,”
J. Phys. D: Appl. Phys.
,
37
, pp.
2531
2544
.10.1088/0022-3727/37/18/009
17.
Hu
,
J.
, and
Tsai
,
H. L.
,
2007
, “
Heat and Mass Transfer in Gas Metal Arc Welding, Part I: The Arc
,”
Int. J. Heat and Mass Transfer
,
50
, pp.
833
846
.10.1016/j.ijheatmasstransfer.2006.08.025
18.
Rao
,
Z. H.
,
Hu
,
J.
,
Liao
,
S. M.
, and
Tsai
,
H. L.
,
2010
, “
Modeling of the Transport Phenomena in GMAW Using Argon–Helium Mixtures. Part I. The Arc
,”
Int. J. Heat Mass Transfer
,
53
, pp.
5707
5721
.10.1016/j.ijheatmasstransfer.2010.08.009
19.
Xu
,
G.
,
Hu
,
J.
, and
Tsai
,
H. L.
,
2012
, “
Modeling Three-Dimensional Plasma Arc in Gas Tungsten Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031001
.10.1115/1.4006091
20.
Xu
,
G.
,
Hu
,
J.
, and
Tsai
,
H. L.
,
2009
, “
Three-Dimensional Modeling of Arc Plasma and Metal Transfer in Gas Metal Arc Welding
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1709
1724
.10.1016/j.ijheatmasstransfer.2008.09.018
21.
Lowke
,
J. J.
,
Morrow
,
R.
, and
Haidar
,
J.
,
1997
, “
A Simplified Unified Theory of Arcs and Their Electrodes
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
2033
2042
.10.1088/0022-3727/30/14/011
22.
Lowke
,
J. J.
,
Kovitya
,
P.
, and
Schmidt
,
H. P.
,
1992
, “
Theory of Free-Burning Arc Columns Including the Influence of the Cathode
,”
J. Phys. D: Appl. Phys.
,
25
, pp.
1600
1606
.10.1088/0022-3727/25/11/006
23.
Knacke
,
O.
,
Kubaschewski
,
O.
, and
Hesselmann
,
K.
,
1991
,
Thermochemical Properties of Inorganic Substance: Supplement
, Vol.
2
,
Springer-Verlag
,
Berlin, NY
, pp.
2336
2348
.
24.
Diao
,
Q. Z.
, and
Tsai
,
H. L.
,
1993
, “
Modeling of Solute Redistribution in the Mushy Zone During Solidification of Aluminum-Copper Alloys
,”
Metall. Trans. A
,
24
, pp.
963
973
.10.1007/BF02656518
25.
Torrey
,
M. D.
,
Cloutman
,
L. D.
,
Mjolsness
,
R. C.
, and
Hirt
,
C. W.
,
1985
, “
NASA-VOF2D: A Computer Program for Incompressible Flows With Free Surfaces
,” Los Alamos National Laboratory, Report No. LA-10612-MS.
26.
Patanka
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
NY
.
27.
ASM Handbook
,
2010
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,
10th ed.
,
ASM International
,
Materials Park, OH
.
28.
Dunn
,
G. J.
, and
Eagar
,
T. W.
,
1986
, “
Metal Vapors in Gas Tungsten Arcs: Part II. Theoretical Calculations of Transport Properties
,”
Metall. Trans. A
,
17
, pp.
1865
1871
.10.1007/BF02817282
29.
R. L.
O'Brien
,
1991
,
Welding Handbook
,
8th ed.
, Vol.
2
,
American Welding Society
, Miami, FL, pp.
380
381
.
You do not currently have access to this content.