During thermoplastic injection moulding process, the gradual increase of the coolant temperature along the conformal cooling channel (CCC) inside the rapid tool reduces the rate of heat transfer from the polymeric melt to the cooling channel surface at the outlet portion. Injection moulded defects such as irregular warpage of the part between the coolant inlet and outlet cannot be avoided. Rapid tooling (RT) technology offers a speedy and automatic method for rapid tool design and fabrication integrated with complex internal structure such as CCC. This paper presents a novel adjustment method for cooling distance modification between the CCC and its mould cavity (or core) surface along the cooling channel. The proposed method can compensate the gradual increase of the coolant temperature from the coolant inlet to the coolant outlet. More heat can be transferred from the mould surface near the coolant outlet to the proposed variable distance conformal cooling channel (VDCCC). In this study, the cooling channel distance modification relies on two adjustment attributes: (1) the adjustment direction and (2) the adjustment amount, between the mould cavity (or core) surface (terrain) and the cooling channel axis (polyline) after the linearized approximation. A computer-aided melt flow analysis tool of moldflow plastics insight is employed in the case study in order to demonstrate the feasibility of the proposed method. The cooling performance of the proposed VDCCC design can be verified.

References

References
1.
Dimla
,
D. E.
,
Camilotto
,
M.
, and
Miani
,
F.
,
2005
, “
Design and Optimization of Conformal Cooling Channels in Injection Moulding Tools
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1294
1300
.10.1016/j.jmatprotec.2005.02.162
2.
Harris
,
R. A.
,
Newlyn
,
H. A.
,
Hague
,
R. J. M.
, and
Dickens
,
P. M.
,
2003
, “
Part Shrinkage Anomalies From Stereolithography Injection Mould Tooling
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
879
887
.10.1016/S0890-6955(03)00080-4
3.
Sridhar
,
L.
,
Sedlak
,
B. M.
, and
Narh
,
K. A.
,
1999
, “
Parametric Study of Heat Transfer in Injection Moulding-Effect of Thermal Contact Resistance
,”
ASME J. Manuf. Sci. E
,
122
(
4
), pp. 698–705.10.1115/1.1287348
4.
Bataineh
,
O. M.
, and
Klamecki
,
B. E.
,
2004
, “
Prediction of Local Part-Mold and Ejection Force in Injection Moulding
,”
ASME J. Manuf. Sci. E
,
127
(
3
), pp. 598–604.10.1115/1.1951785
5.
An
,
C. C.
, and
Chen
,
R. H.
,
2006
, “
Experimental Study of Demolding Properties on Stereolithography Tooling
,”
ASME J. Manuf. Sci. E
,
129
(
4
), pp. 843–847.10.1115/1.2716752
6.
Cheng
,
J.
, and
Yao
,
Y. L.
,
2001
, “
Cooling Effects in Multi-Scan Laser Forming
,”
J. Manuf. Processes
,
3
(
1
), pp.
60
72
.10.1016/S1526-6125(01)70034-5
7.
Juan
,
C.
,
Gupta
,
S. K.
, and
Avram
,
B.
,
2011
, “
Incorporating Mouldability Considerations During the Design of Polymer Heat Exchangers
,
ASME J. Mech. Des.
,
133
(
8
), p.
081009
.10.1115/1.4004583
8.
Huang
,
J.
, and
Fadel
,
M. G.
,
2000
, “
Bi-Objective Optimization Design of Heterogeneous Injection Mold Cooling Systems
,”
ASME J. Mech. Des.
,
123
(
2
), pp. 226–239.10.1115/1.1347992
9.
Janczyk
,
M. J.
,
1994
, “
Thermal Design & Analysis of Stereolithography Rapid Tooling for Injection Moulding
,” M.S. thesis, University of Massachusetts, Lowell, MA.
10.
Holman
,
J. P.
,
1986
,
Heat Transfer
,
McGraw-Hill
,
Boston
, MA, Chap. II.
11.
Yoo
,
S.
, and
Walczyk
,
D. F.
,
2006
, “
A Preliminary Study of Sealing and Heat Transfer Performance of Conformal Channels and Cooling Fins in Laminated Tooling
,”
ASME J. Manuf. Sci. E
,
129
(
2
), pp.
388
399
.10.1115/1.2515522
12.
Au
,
K. M.
,
Yu
,
K. M.
, and
Chiu
W. K.
,
2011
, “
Visibility-Based Conformal Cooling Channel Generation for Rapid Tooling
,”
Comput. Aided Des.
,
43
(
4
), pp.
356
373
.10.1016/j.cad.2011.01.001
13.
Ferreira
,
J. C.
, and
Mateus
,
A.
,
2003
, “
Studies of Rapid Soft Tooling With Conformal Cooling Channels for Plastic Injection Moulding
,”
J. Mater. Process. Technol.
,
142
, pp.
508
516
.10.1016/S0924-0136(03)00650-2
14.
Au
,
K. M.
, and
Yu
,
K. M.
,
2011
, “
Modeling of Multi-Connected Porous Passageway for Mould Cooling
,”
Comput. Aided Des.
,
43
(
8
), pp.
989
1000
.10.1016/j.cad.2011.02.007
15.
Au
,
K. M.
, and
Yu
,
K. M.
,
2006
, “
Variable Radius Conformal Cooling Channel for Rapid Tool
,”
Mater. Sci. Forum
,
532
, pp.
520
523
.10.4028/www.scientific.net/MSF.532-533.520
16.
Li
,
C. L.
, and
Li
,
C. G.
,
2008
, “
Plastic Injection Mould Cooling System Design by the Configuration Space Method
,”
Comput. Aided Des.
,
40
(
3
), pp.
334
349
.10.1016/j.cad.2007.11.010
17.
Rossignac
,
J. R.
,
1985
, “
Blending and Offsetting Solid Models
,” Ph.D. thesis, University of Rochester, Rochester, NY.
18.
Simulation Moldflow—MPI, Autodesk, Inc., http://www.moldflow.com/stp/
19.
Dominick
,
V. R.
,
Donald
,
V. R.
, and
Marlene
,
G. R.
,
2000
,
Injection Moulding Handbook
,
Kluwer Academic Publishers
,
Norwell
, MA, Chap. I.
20.
Rees
,
H.
,
2002
,
Mold Engineering
,
Hanser
,
New York
, Chap. XIII.
21.
Qiao
,
H.
,
2006
, “
A Systematic Computer-Aided Approach to Cooling System Optimal Design in Plastic Injection Moulding
,”
Int. J. Mech. Sci.
,
48
(
4
), pp.
430
439
.10.1016/j.ijmecsci.2005.11.001
22.
Anand
,
V. B.
,
1993
,
Computer Graphics and Geometric Modeling for Engineers
,
John Wiley & Sons
,
New York
, Chap. X.
You do not currently have access to this content.