A dynamic model is developed to investigate vibrations of high speed rolling ball bearings with localized surface defects on raceways. In this model, each bearing component (i.e., inner raceway, outer raceway and rolling ball) has six degrees of freedom (DOFs) to completely describe its dynamic characteristics in three-dimensional space. Gyroscopic moment, centrifugal force, lubrication traction/slip between bearing component are included owing to high speed effects. Moreover, local defects are modeled accurately and completely with consideration of additional deflection due to material absence, changes of Hertzian contact coefficient and changes of contact force directions due to raceway curvature variations. The obtained equations of motion are solved numerically using the fourth order Runge–Kutta–Fehlberg scheme with step-changing criterion. Vibration responses of a defective bearing with localized surface defects are simulated and analyzed in both time domain and frequency domain, and the effectiveness of fault feature extraction techniques is also discussed. An experiment is carried out on an aerospace bearing test rig. By comparing the simulation results with experiments, it is confirmed that the proposed model is capable of predicting vibration responses of defective high speed rolling ball bearings effectively.

References

References
1.
Wang
,
S. B.
,
Huang
,
W. G.
, and
Zhu
,
Z. K.
,
2011
, “
Transient Modeling and Parameter Identification Based on Wavelet and Correlation Filtering for Rotating Machine Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1299
1320
.10.1016/j.ymssp.2010.10.013
2.
Yan
,
R.
,
Gao
,
R. X.
, and
Chen
,
X.
,
2014
, “
Wavelets for Fault Diagnosis of Rotary Machines: A Review With Applications
,”
Signal Process.
,
96
, pp.
1
15
.10.1016/j.sigpro.2013.04.015
3.
Yan
,
R.
, and
Gao
,
R. X.
,
2012
, “
A Nonlinear Noise Reduction Approach to Vibration Analysis for Bearing Health Diagnosis
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021004
.10.1115/1.4005463
4.
Yan
,
R.
,
Gao
,
R. X.
, and
Wang
,
C.
,
2009
, “
Experimental Evaluation of a Unified Time-Scale-Frequency Technique for Bearing Defect Feature Extraction
,”
ASME J. Vib. Acoust.
,
131
(
4
), p.
041012
.10.1115/1.3147125
5.
Borghesani
,
P.
,
Pennacchi
,
P.
,
Randall
,
R. B.
,
Sawalhi
,
N.
, and
Ricci
,
R.
,
2013
, “
Application of Cepstrum Pre-Whitening for the Diagnosis of Bearing Faults Under Variable Speed Conditions
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
370
384
.10.1016/j.ymssp.2012.11.001
6.
Randall
,
R. B.
, and
Antoni
,
J.
,
2011
, “
Rolling Element Bearing Diagnostics-A Tutorial
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
485
520
.10.1016/j.ymssp.2010.07.017
7.
Zhang
,
Y.
, and
Randall
,
R. B.
,
2009
, “
Rolling Element Bearing Fault Diagnosis Based on the Combination of Genetic Algorithms and Fast Kurtogram
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1509
1517
.10.1016/j.ymssp.2009.02.003
8.
Antoni
,
J.
,
2009
, “
Cyclostationarity by Examples
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
987
1036
.10.1016/j.ymssp.2008.10.010
9.
Yang
,
Y.
,
Liao
,
Y.
,
Meng
,
G.
, and
Lee
,
J.
,
2011
, “
A Hybrid Feature Selection Scheme for Unsupervised Learning and Its Application in Bearing Fault Diagnosis
,”
Expert Syst. Appl.
,
38
(
9
), pp.
11311
11320
.10.1016/j.eswa.2011.02.181
10.
Yuan
,
J.
,
He
,
Z.
,
Zi
,
Y.
, and
Ying
,
W.
,
2013
, “
Construction and Selection of Lifting-Based Multiwavelets for Mechanical Fault Detection
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
571
588
.10.1016/j.ymssp.2013.06.017
11.
Chen
,
J.
,
Zuo
,
M. J.
,
Zi
,
Y.
, and
He
,
Z.
,
2014
, “
Construction of Customized Redundant Multiwavelet via Increasing Multiplicity for Fault Detection of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
206
224
.10.1016/j.ymssp.2013.08.024
12.
Gupta
,
P. K.
,
1984
,
Advanced Dynamic of Rolling Elements
,
Springer-Verlag
,
New York
.
13.
Jones
,
A. B.
,
1960
, “
A General Theory of Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
21
), pp.
309
320
.10.1115/1.3662587
14.
Jang
,
G.
, and
Jeong
,
S. W.
,
2004
, “
Vibration Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness
,”
J. Sound Vib.
,
269
(
3–5
), pp.
709
726
.10.1016/S0022-460X(03)00127-5
15.
Bai
,
C. Q.
, and
Xu
,
Q. Y.
,
2006
, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
,
294
(
1–2
), pp.
23
48
.10.1016/j.jsv.2005.10.005
16.
Cao
,
H.
,
Niu
,
L.
, and
He
,
Z.
,
2012
, “
Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System With a Bearing Defect
,”
Sensors
,
12
(
7
), pp.
8732
8754
.10.3390/s120708732
17.
Sunnersjö
,
C. S.
,
1978
, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
,
58
(
3
), pp.
363
373
.10.1016/S0022-460X(78)80044-3
18.
Shao
,
Y.
,
Liu
,
J.
, and
Ye
,
J.
,
2014
, “
A New Method to Model a Localized Surface Defect in a Cylindrical Roller-Bearing Dynamic Simulation
,”
Proc. IMechE. Part J: J. Eng. Tribol.
,
228
(
2
), pp.
140
159
.10.1177/1350650113499745
19.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1150
1174
.10.1016/j.jsv.2008.06.043
20.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
, pp.
156
169
.10.1016/j.mechmachtheory.2012.05.008
21.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.10.1016/j.ijmecsci.2010.05.005
22.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2012
, “
Nonlinear Vibration Signature Analysis of High Speed Rotor Bearing System Due to Race Imperfection
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011014
.10.1115/1.4004962
23.
Pandya
,
D. H.
,
Upadhyay
,
S. H.
, and
Harsha
,
S. P.
,
2013
, “
Nonlinear Dynamic Analysis of High Speed Bearings Due to Combined Localized Defects
,”
J. Vib. Control
(in press).
24.
Feng
,
N. S.
,
Hahn
,
E. J.
, and
Randall
,
R. B.
,
2002
, “
Using Transient Analysis Software to Simulate Vibration Signals Due to Rolling Element Bearing Defects
,”
Proceedings of the 3rd Australian Congress on Applied Mechanics
, Sydney, pp.
689
694
.
25.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2008
, “
Simulating Gear and Bearing Interactions in the Presence of Faults-Part I. The Combined Gear Bearing Dynamic Model and the Simulation of Localised Bearing Faults
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1924
1951
.10.1016/j.ymssp.2007.12.001
26.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2008
, “
Simulating Gear and Bearing Interactions in the Presence of Faults-Part II. Simulation of the Vibrations Produced by Extended Bearing Faults
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1952
1966
.10.1016/j.ymssp.2007.12.002
27.
Babu
,
C. K.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2012
, “
Vibration Modeling of a Rigid Rotor Supported on the Lubricated Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011006
.10.1115/1.4005140
28.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
,
2004
, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
,
272
(
3–5
), pp.
557
580
.10.1016/S0022-460X(03)00384-5
29.
Harsha
,
S. P.
, and
Kankar
,
P. K.
,
2004
, “
Stability Analysis of a Rotor Bearing System Due to Surface Waviness and Number of Balls
,”
Int. J. Mech. Sci.
,
46
(
7
), pp.
1057
1081
.10.1016/j.ijmecsci.2004.07.007
30.
Harsha
,
S. P.
,
2006
, “
Rolling Bearing Vibrations-The Effects of Surface Waviness and Radial Internal Clearance
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
7
(
2
), pp.
91
111
.10.1080/155022891010015
31.
Arslan
,
H.
, and
Aktürk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), p.
041101
.10.1115/1.2958070
32.
Patel
, V
. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.10.1115/1.4002333
33.
Nakhaeinejad
,
M.
, and
Bryant
,
M. D.
,
2011
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.10.1115/1.4003088
34.
Cao
,
M.
, and
Xiao
,
J.
,
2008
, “
A Comprehensive Dynamic Model of Double-Row Spherical Roller Bearing-Model Development and Case Studies on Surface Defects, Preloads, and Radial Clearance
,”
Mech. Syst. Signal Process.
,
22
(
2
), pp.
467
489
.10.1016/j.ymssp.2007.07.007
35.
Tadina
,
M.
, and
Boltežar
,
M.
,
2011
, “
Improved Model of a Ball Bearing for the Simulation of Vibration Signals Due to Faults During Run-Up
,”
J. Sound Vib.
,
330
(
17
), pp.
4287
4301
.10.1016/j.jsv.2011.03.031
36.
Sassi
,
S.
,
Badri
,
B.
, and
Thomas
,
M.
,
2007
, “
A Numerical Model to Predict Damaged Bearing Vibrations
,”
J. Vib. Control
,
13
(
11
), pp.
1603
1628
.10.1177/1077546307080040
37.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearings in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.10.1115/1.2164467
38.
Bogdevičius
,
M.
, and
Skrickij
,
V.
,
2013
, “
Investigation of Dynamic Processes in Ball Bearings With Defects
,”
Solid State Phenom.
,
198
, pp.
651
656
.10.4028/www.scientific.net/SSP.198.651
39.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
293
302
.10.1115/1.3453357
40.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
312
318
.10.1115/1.3453363
41.
Stacke
,
L. E.
,
Frizson
,
D.
, and
Nordling
,
P.
,
1999
, “
BEAST-A Rolling Bearing Simulation Tool
,”
Proc. Inst. Mech. Eng., Part K
,
213
(
2
), pp.
63
71
.10.1243/1350650991542622
42.
Stacke
,
L. E.
, and
Frizson
,
D.
,
2001
, “
Dynamic Behaviour of Rolling Bearings: Simulations and Experiments
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
J6
):
499
508
.10.1243/1350650011543754
43.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
126
(
4
), pp.
681
689
.10.1115/1.1792674
44.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L. E.
,
2010
, “
Surface Defects Effects on Bearing Dynamics
,”
Proc. Inst. Mech. Eng., Part J
,
224
(
J1
), pp.
25
35
.10.1243/13506501JET578
45.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L. E.
,
2008
, “
A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations
,”
ASME J. Tribol.
,
130
(
4
), p.
041103
.10.1115/1.2959106
46.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Essential Concepts of Bearing Technology
,
Taylor & Francis
,
Boca Raton, FL
.
47.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Advanced Concepts of Bearing Technology
,
Taylor & Francis
,
Boca Raton, FL
.
48.
Zeidler
,
E.
,
Hackbusch
,
W.
, and
Schwarz
,
H. R.
,
2003
,
Teubner–Taschenbuch der Mathematik
,
B. G. Teubner Verlag
,
Wiesbaden
.
49.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2011
, “
Vibration Response of Spalled Rolling Element Bearings: Observations, Simulations and Signal Processing Techniques to Track the Spall Size
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
846
870
.10.1016/j.ymssp.2010.09.009
50.
Dowling
,
M. J.
,
1993
, “
Application of Non-Stationary Analysis to Machinery Monitoring
,” IEEE Paper No. 0-7803-0946-4/93, pp.
159
162
.
51.
Gupta
,
P. K.
,
Winn
,
L. W.
,
Wilcock
,
D. F.
,
1977
, “
Vibration Characteristics of Ball Bearings
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
284
287
.10.1115/1.3453078
52.
Sun
,
C.
,
Zhang
,
Z.
,
He
,
Z.
,
Shen
,
Z.
, and
Chen
,
B.
,
2014
, “
Novel Method for Bearing Performance Degradation Assessment-A Kernel Locality Preserving Projection-Based Approach
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
3
), pp.
548
560
.10.1177/0954406213486735
53.
Shen
,
Z. J.
,
2012
, “
The Research of Multivariable Support Vector Machine With Application in Life Prediction
,” Ph.D. thesis, Xi'an Jiaotong University, Xi'an, China.
You do not currently have access to this content.