Reconfigurable Machine Tools (RMTs) have been developed in response to agile flexible manufacturing demands. Current design methodologies for RMTs support modular reconfigurability in which a machine configuration is assembled for a given part. In this paper, on the other hand, reconfigurability relies on redundancy, namely, a desired RMT configuration is obtained through topological reconfiguration by locking/unlocking degrees-of-freedom (dof). Thus, in order to design a Redundant Reconfigurable Machine Tool (RRMT) with all of its dof already included, a new multi–tier optimization based design methodology was developed. The design is formulated for the efficient selection of the best architecture from a set of serial/parallel/hybrid solutions, while considering the redundant reconfigurability effect on performance. The viability of the methodology is demonstrated herein via a design test case of a Parallel Kinematic Mechanism (PKM)-based Redundant Reconfigurable meso-Milling Machine Tool (RRmMT) that can attain high stiffness at the high feed-rate required in meso-milling.

References

References
1.
Moon
,
Y.-M.
, and
Kota
,
S.
,
2002
, “
Design of Reconfigurable Machine Tools
,”
ASME J. Manuf. Sci. E
,
124
(
2
), pp.
480
483
.10.1115/1.1452748
2.
Cheng
,
K.
, and
Huo
,
D.
,
2013
,
Micro Cutting—Fundamentals and Applications
,
John Wiley & Sons
,
Oxford, UK
.
3.
Dhanorker
,
A.
, and
Özel
,
T.
,
2008
, “
Meso/Micro Scale Milling for Micro-Manufacturing
,”
Int. J. Mechatronics Manuf. Syst.
,
1
(
1
), pp.
23
41
.10.1504/IJMMS.2008.018273
4.
Zhang
,
D.
,
Wang
,
L.
, and
Lang
,
S. Y. T.
,
2005
, “
Parallel Kinematic Machines: Design, Analysis, and Simulation in an Integrated Virtual Environment
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
580
588
.10.1115/1.1897745
5.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools-Current State and Future Potentials
,”
CIRP Ann.
,
51
(
2
), pp.
671
683
.10.1016/S0007-8506(07)61706-5
6.
Zhang
,
D.
,
2010
,
Parallel Robotic Machine Tools
,
Springer
,
New York/Dordrecht, Heidelberg
.
7.
Son
,
S.
,
Kim
,
T.
,
Sarma
,
S. E.
, and
Slocum
,
A.
,
2009
, “
A Hybrid 5-Axis CNC Milling Machine
,”
Precis. Eng.
,
33
(
4
), pp.
430
446
.10.1016/j.precisioneng.2008.12.001
8.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots Part 1: Methodology
,
Springer
,
Dordrecht, Netherlands
.
9.
Harib
,
K. H.
,
Sharif Ullah
,
A. M. M.
, and
Hammami
,
A.
,
2007
, “
A Hexapod-Based Machine Tool With Hybrid Structure: Kinematic Analysis and Trajectory Planning
,”
Int. J. Mach. Tool Manuf.
,
47
(
9
), pp.
1426
1432
.10.1016/j.ijmachtools.2006.09.021
10.
Owen
,
W. S.
,
Croft
,
E. A.
, and
Benhabib
,
B.
,
2008
, “
A Multi-Arm Robotic System for Optimal Sculpting
,”
Rob. Comput.-Integr. Manf.
,
24
(
1
), pp.
92
104
.10.1016/j.rcim.2006.08.001
11.
Bi
,
Z. M.
,
Lang
,
S.
,
Verner
,
M.
, and
Orban
,
P.
,
2008
, “
Development of Reconfigurable Machines
,”
Int. J. Adv. Manuf. Technol.
,
39
(
11
), pp.
1227
1251
.10.1007/s00170-007-1288-1
12.
Zhang
,
D.
,
2006
, “
On the Re-Configurability Design of Parallel Machine Tools
,”
Information Technology for Balanced Manufacturing Systems
,
W.
Shen
, ed.,
Springer
,
Boston
, MA, pp.
309
316
.
13.
Bi
,
Z. M.
, and
Kang
,
B.
,
2010
, “
Enhancement of Adaptability of Parallel Kinematic Machines With an Adjustable Platform
,”
J Manuf. Sci. E
,
132
(
6
), p.
061016
.10.1115/1.4003120
14.
Plitea
,
N.
,
Lese
,
D.
,
Pisla
,
D.
, and
Vaida
,
C.
,
2013
, “
Structural Design and Kinematics of a New Parallel Reconfigurable Robot
,”
Rob. Comput.-Integr. Manf.
,
29
, pp.
219
235
.10.1016/j.rcim.2012.06.001
15.
Budde
,
C.
,
Helm
,
M.
,
Last
,
P.
,
Raatz
,
A.
, and
Hesselbach
,
J.
,
2011
, “
Configuration Switching for Workspace Enlargement
,”
Robotic Systems for Handling and Assembly
,
D.
Schütz
, and
F.
Wahl
, eds.,
Springer
,
Berlin Heidelberg
, pp.
175
189
.
16.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2014
, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain
,”
Mech. Mach. Theory
,
74
, pp.
1
9
.10.1016/j.mechmachtheory.2013.11.011
17.
Honegger
,
A. E.
,
Langstaff
,
G. Q.
,
Phillip
,
A. G.
,
VanRavenswaay
,
T. D.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
Development of an Automated Microfactory: Part 1—Microfactory Architecture and Sub-Systems Development
,”
Transactions of the North American Manufacturing Research Institute of SME
,
34
, pp.
334
340
.
18.
Azulay
,
H.
,
Hawryluck
,
C.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2011
, “
Configuration Design of a Meso-Milling Machine
,”
Proceedings of the 23rd CANCAM Vancouver, Canada
.
19.
Zhao
,
R.
,
Azulay
,
H.
,
Mahmoodi
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2013
, “
Analysis of 6-dof 3×PPRS Parallel Kinematic Mechanisms for Meso-Milling
,”
2nd International Conference on Virtual Machining Process Technology
,
Hamilton, Canada
.
20.
Kannan
,
M.
, and
Saha
,
J.
,
2009
, “
A Feature-Based Generic Setup Planning for Configuration Synthesis of Reconfigurable Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
43
(
9
), pp.
994
1009
.10.1007/s00170-008-1779-8
21.
Chen
,
L.
,
Xi
,
F.
, and
Macwan
,
A.
,
2005
, “
Optimal Module Selection for Preliminary Design of Reconfigurable Machine Tools
,”
ASME J. Manuf. Sci. E
,
127
(
1
), pp.
104
115
.10.1115/1.1826075
22.
Bi
,
Z. M.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput.-Integr. Manf.
,
25
(
6
), pp.
951
961
.10.1016/j.rcim.2009.04.004
23.
Liu
,
W.
, and
Liang
,
M.
,
2008
, “
Multi-Objective Design Optimization of Reconfigurable Machine Tools: A Modified Fuzzy-Chebyshev Programming Approach
,”
Int. J. Prod. Res.
,
46
(
6
), pp.
1587
1618
.10.1080/00207540600943944
24.
Dash
,
A. K.
,
Chen
, I.-M
.
,
Yeo
,
S. H.
, and
Yang
,
G.
,
2005
, “
Task-Oriented Configuration Design for Reconfigurable Parallel Manipulator Systems
,”
Int. J. Comput.-Int. Manuf.
,
18
(
7
), pp.
615
634
.10.1080/09511920500069192
25.
Belchior
,
J.
,
Guillo
,
M.
,
Courteille
,
E.
,
Maurine
,
P.
,
Leotoing
,
L.
, and
Guines
,
D.
,
2013
, “
Off-Line Compensation of the Tool Path Deviations on Robotic Machining: Application to Incremental Sheet Forming
,”
Rob. Comput.-Integr. Manuf.
,
29
(
4
), pp.
58
69
.10.1016/j.rcim.2012.10.008
26.
Pateloup
,
S.
,
Chanal
,
H.
, and
Duc
,
E.
,
2012
, “
Process Definition of Preformed Part Machining for Taking Benefit of Parallel Kinematic Machine Tool Kinematic Performances
,”
Int. J. Adv. Manuf. Technol.
,
58
(
9
), pp.
869
883
.10.1007/s00170-011-3453-9
27.
Finistauri
,
A. D.
, and
Xi
,
F.
,
2013
, “
Reconfiguration Analysis of a Fully Reconfigurable Parallel Robot
,”
J. Mech. Rob.
, pp.
295
304
.10.1007/978-1-4471-4141-9_27
28.
Abouridouane
,
M.
,
Klocke
,
F.
,
Lung
,
D.
, and
Adams
,
O.
,
2012
, “
Size Effects in Micro Drilling Ferritic-Pearlitic Carbon Steels
,”
CIRP Conference on Manufacturing Systems
, pp.
91
96
.
29.
Phillip
,
A. G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
A New Acceleration-Based Methodology for Micro/Meso-Scale Machine Tool Performance Evaluation
,”
Int. J. Mach. Tool Manuf.
,
46
(
12–13
), pp.
1435
1444
.10.1016/j.ijmachtools.2005.09.015
30.
Nanomotion
,
2013
, “
Nanomotion
,” http://www.nanomotion.com/
31.
Pérez
,
R.
,
Molina
,
A.
, and
Ramirez
,
M.
,
2014
, “
Development of an Integrated Approach to the Design of Reconfigurable Micro/Meso-Scale CNC Machine Tools
,”
J. Manuf. Sci. E
,
136
(3), p.
031003
.10.1115/1.4025405
32.
Breitkopf
,
P.
, and
Coelho
,
R. F.
,
2010
,
Design Optimization in Computational Mechanics
,
Wiley-ISTE
,
London/Hoboken, NJ
.
33.
Phillips
,
C. A.
, and
Drake
,
J. C.
,
2000
, “
Trajectory Optimization for a Missile Using a Multitier Approach
,”
J. Spacecr. Rockets
,
37
(
5
), pp.
653
662
.10.2514/2.3614
34.
Chin-Yin
,
C.
, and
Chi-Cheng
,
C.
,
2005
, “
Integrated Design for a Mechatronic Feed Drive System of Machine Tools
,” Proceedings, 2005 IEEE/
ASME
International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, July 24–28, pp.
588
593
.10.1109/AIM.2005.1511046
35.
Jongwon
,
K.
,
Chongwoo
,
P.
,
Sun Joong
,
R.
,
Jinwook
,
K.
,
Jae
Chul
,
H.
,
Changbeom
,
P.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE J. Rob. Autom.
,
17
(
4
), pp.
423
434
.10.1109/70.954755
36.
Azulay
,
H.
,
Mahmoodi
,
M.
,
Zhao
,
R.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
Comparative Analysis of a New 3 × PPRS Parallel Kinematic Mechanism
,”
Rob. Comput. Integr. Manuf
,
30
(
4
), pp.
369
378
.10.1016/j.rcim.2013.12.003
37.
Bibber
,
D.
,
2010
, “
Earning Respect, Little by Little
,”
Med. Manuf.
, pp.
53
55
.
38.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1988
, “
A Dynamic Model for the Cutting Force System in the End Milling Process
,”
Sensors and Controls for Manufacturing
, ASME-PED,
33
, pp.
52
62
.
39.
Schaller
,
T.
,
John
,
L.
,
Mayer
,
J.
, and
Schubert
,
K.
,
1999
, “
Microstructure Grooves With a Width of Less than 50 μm Cut With Ground Hard Metal Micro End Mills
,”
Precis. Eng.
,
23
, pp.
229
235
.10.1016/S0141-6359(99)00011-2
40.
Mishima
,
N.
,
2004
, “
A Study on Optimization of Miniature Machine Tool Design
,”
Proceedings of 4th International Workshop on Microfactories (IWMF2004)
,
Shanghai, China
, pp.
56
61
.
You do not currently have access to this content.