Recently, orthogonal cutting has been exploited as a means for producing ultrafine grained (UFG) and nanocrystalline microstructures for various metal materials, such as aluminum alloys, copper, stainless steel, titanium and nickel-based super alloys, etc. However, no predictive, analytical or numerical work has ever been presented to quantitatively predict the change of grain sizes during plane-strain orthogonal cutting. In this paper, a dislocation density-based material plasticity model is adapted for modeling the grain size refinement mechanism during orthogonal cutting by means of a finite element based numerical framework. A coupled Eulerian–Lagrangian (CEL) finite element model embedded with the dislocation density subroutine is developed to model the severe plastic deformation and grain refinement during a steady-state cutting process. The orthogonal cutting tests of a commercially pure titanium (CP Ti) material are simulated in order to assess the validity of the numerical solution through comparison with experiments. The dislocation density-based material plasticity model is calibrated to reproduce the observed material constitutive mechanical behavior of CP Ti under various strains, strain rates, and temperatures in the cutting process. It is shown that the developed model captures the essential features of the material mechanical behavior and predicts a grain size of 100–160 nm in the chips of CP Ti at a cutting speed of 10 mm/s.

References

References
1.
Ni
,
H.
, and
Alpas
,
A. T.
,
2003
, “
Sub-Micrometer Structures Generated During Dry Machining of Copper
,”
Mater. Sci. Eng. A
,
361
(
1-2
), pp.
338
349
.10.1016/S0921-5093(03)00530-6
2.
Elmadagli
,
M.
, and
Alpas
,
A. T.
,
2003
, “
Metallographic Analysis of the Deformation Microstructure of Copper Subjected to Orthogonal Cutting
,”
Mater. Sci. Eng. A
,
355
(
1-2
), pp.
249
259
.10.1016/S0921-5093(03)00072-8
3.
Swaminathan
,
S.
,
Shankar
,
M. R.
,
Lee
,
S.
,
Hwang
,
J.
,
King
,
A. H.
,
Kezar
,
R. F.
,
Rao
,
B. C.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
, and
Trumble
,
K. P.
,
2005
, “
Large Strain Deformation and Ultra-Fine Grained Materials by Machining
,”
Mater. Sci. Eng. A
,
410-411
, pp.
358
363
.10.1016/j.msea.2005.08.139
4.
Zhang
,
H.
, and
Alpas
,
A. T.
,
2002
, “
Quantitative Evaluation of Plastic Strain Gradients Generated During Orthogonal Cutting of an Aluminum Alloy
,”
Mater. Sci. Eng. A
,
332
(
1-2
), pp.
249
254
.10.1016/S0921-5093(01)01752-X
5.
Shankar
,
M. R.
,
Rao
,
B. C.
,
Lee
,
S.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Compton
,
W. D.
,
2006
, “
Severe Plastic Deformation (SPD) of Titanium at Near-Ambient Temperature
,”
Acta Mater.
,
54
(
14
), pp.
3691
3700
.10.1016/j.actamat.2006.03.056
6.
Shankar
,
M. R.
,
Verma
,
R.
,
Rao
,
B. C.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
,
King
,
A. H.
, and
Trumble
,
K. P.
,
2007
, “
Severe Plastic Deformation of Difficult-to-Deform Materials at Near-Ambient Temperature
,”
Proceedings of Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
,
Springer, Boston
, MA, pp.
1899
1905
.
7.
Stolyarov
,
V. V.
,
Zhu
,
Y. T.
,
Alexandrov
,
I. V.
,
Lowe
,
T. C.
, and
Valiev
,
R. Z.
,
2003
, “
Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling
,”
Mater. Sci. Eng. A
,
343
(
1-2
), pp.
43
50
.10.1016/S0921-5093(02)00366-0
8.
Deng
,
W. J.
,
Xia
,
W.
,
Li
,
C.
, and
Tang
,
Y.
,
2010
, “
Ultrafine Grained Material Produced by Machining
,”
Mater. Manuf. Process.
,
25
(
6
), pp.
355
359
.10.1080/10426910902748024
9.
Petryk
,
H.
, and
Stupkiewicz
,
S.
,
2007
, “
A Quantitative Model of Grain Refinement and Strain Hardening During Severe Plastic Deformation
,”
Mater. Sci. Eng. A
,
444
(
1-2
), pp.
214
219
.10.1016/j.msea.2006.08.076
10.
Beygelzimer
,
Y.
,
2005
, “
Grain Refinement Versus Voids Accumulation During Severe Plastic Deformations of Polycrystals: Mathematical Simulation
,”
Mech. Mater.
,
37
(
7
), pp.
753
767
.10.1016/j.mechmat.2004.07.006
11.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.10.1016/S1359-6454(99)00020-8
12.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
2002
, “
Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
1979
2009
.10.1016/S0022-5096(01)00134-X
13.
Ma
,
A.
, and
Roters
,
F.
,
2004
, “
A Constitutive Model for FCC Single Crystals Based on Dislocation Densities and Its Application to Uniaxial Compression of Aluminium Single Crystals
,”
Acta Mater.
,
52
(
12
), pp.
3603
3612
.10.1016/j.actamat.2004.04.012
14.
Ma
,
A.
,
Roters
,
F.
, and
Raabe
,
D.
,
2007
, “
A Dislocation Density Based Constitutive Law for BCC Materials in Crystal Plasticity FEM
,”
Comput. Mater. Sci.
,
39
(
1
), pp.
91
95
.10.1016/j.commatsci.2006.04.014
15.
Mohamed
,
F. A.
,
2003
, “
A Dislocation Model for the Minimum Grain Size Obtainable by Milling
,”
Acta Mater.
,
51
(
14
), pp.
4107
4119
.10.1016/S1359-6454(03)00230-1
16.
Starink
,
M. J.
,
Qiao
,
X. G.
,
Zhang
,
J.
, and
Gao
,
N.
,
2009
, “
Predicting Grain Refinement by Cold Severe Plastic Deformation in Alloys Using Volume Averaged Dislocation Generation
,”
Acta Mater.
,
57
(
19
), pp.
5796
5811
.10.1016/j.actamat.2009.08.006
17.
Estrin
,
Y.
,
Tóth
,
L. S.
,
Molinari
,
A.
, and
Bréchet
,
Y.
,
1998
, “
A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation
,”
Acta Mater.
,
46
(
15
), pp.
5509
5522
.10.1016/S1359-6454(98)00196-7
18.
Tóth
,
L. S.
,
Molinari
,
A.
, and
Estrin
,
Y.
,
2002
, “
Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model
,”
ASME J. Eng. Mater. Technol.
,
124
, pp.
71
77
.10.1115/1.1421350
19.
Baik
,
S. C.
,
Hellmig
,
R. J.
,
Estrin
,
Y.
, and
Kim
,
H. S.
,
2003
, “
Modeling of Deformation Behavior of Copper Under Equal Channel Angular Pressing
,”
Zeitschrift fur Metallkunde
,
94
, pp.
754
760
.10.3139/146.030754
20.
Baik
,
S. C.
,
Estrin
,
Y.
,
Kim
,
H. S.
, and
Hellmig
,
R. J.
,
2003
, “
Dislocation Density-Based Modeling of Deformation Behavior of Aluminum Under Equal Channel Angular Pressing
,”
Mater. Sci. Eng., A
,
351
(
1-2
), pp.
86
97
.10.1016/S0921-5093(02)00847-X
21.
Baik
,
S. C.
,
Estrin
,
Y.
,
Kim
,
H. S.
,
Jeong
,
H.-T.
, and
Hellmig
,
R. J.
,
2002
, “
Calculation of Deformation Behavior and Texture Evolution During Equal Channel Angular Pressing of IF Steel Using Dislocation Based Modeling of Strain Hardening
,”
Mater. Sci. Forum
,
408-412
, pp.
697
702
.10.4028/www.scientific.net/MSF.408-412.697
22.
Kim
,
H. S.
, and
Estrin
,
Y.
,
2005
, “
Microstructural Modelling of Equal Channel Angular Pressing for Producing Ultrafine Grained Materials
,”
Mater. Sci. Eng. A
,
410-411
, pp.
285
289
.10.1016/j.msea.2005.08.047
23.
Lemiale
,
V.
,
Estrin
,
Y.
,
Kim
,
H. S.
, and
O'Donnell
,
R.
,
2010
, “
Grain Refinement Under High Strain Rate Impact: A Numerical Approach
,”
Comput. Mater. Sci.
,
48
(
1
), pp.
124
132
.10.1016/j.commatsci.2009.12.018
24.
Hosseini
,
E.
, and
Kazeminezhad
,
M.
,
2009
, “
A Hybrid Model on Severe Plastic Deformation of Copper
,”
Comput. Mater. Sci.
,
44
(
4
), pp.
1107
1115
.10.1016/j.commatsci.2008.07.024
25.
Hosseini
,
E.
, and
Kazeminezhad
,
M.
,
2011
, “
Implementation of a Constitutive Model in Finite Element Method for Intense Deformation
,”
Mater. Des.
,
32
(
2
), pp.
487
494
.10.1016/j.matdes.2010.08.033
26.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
, pp.
3016
3025
.10.1016/j.commatsci.2011.05.020
27.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling
,”
J. Mater. Process. Technol.
,
212
, pp.
1003
1013
.10.1016/j.jmatprotec.2011.12.005
28.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
79
88
.10.1016/j.commatsci.2011.08.038
29.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
051014
.10.1115/1.4007464
30.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.10.1016/j.jmatprotec.2012.12.016
31.
Zherebtsov
,
S. V.
,
Dyakonov
,
G. S.
,
Salem
,
A. A.
,
Malysheva
,
S. P.
,
Salishchev
,
G. A.
, and
Semiatin
,
S. L.
,
2011
, “
Evolution of Grain and Subgrain Structure During Cold Rolling of Commercial-Purity Titanium
,”
Mater. Sci. Eng., A
,
528
(
9
), pp.
3474
3479
.10.1016/j.msea.2011.01.039
32.
Stolyarov
,
V. V.
,
Zeipper
,
L.
,
Mingler
,
B.
, and
Zehetbauer
,
M.
,
2008
, “
Influence of Post-Deformation on CP-Ti Processed by Equal Channel Angular Pressing
,”
Mater. Sci. Eng., A
,
476
(
1-2
), pp.
98
105
.10.1016/j.msea.2007.04.069
33.
Shin
,
D. H.
,
Kim
,
I.
,
Kim
,
J.
,
Kim
,
Y. S.
, and
Semiatin
,
S. L.
,
2003
, “
Microstructure Development During Equal-Channel Angular Pressing of Titanium
,”
Acta Mater.
,
51
(
4
), pp.
983
996
.10.1016/S1359-6454(02)00501-3
34.
Pachla
,
W.
,
Kulczyk
,
M.
,
Sus-Ryszkowska
,
M.
,
Mazur
,
A.
, and
Kurzydlowski
,
K. J.
,
2008
, “
Nanocrystalline Titanium Produced by Hydrostatic Extrusion
,”
J. Mater. Process. Technol.
,
205
(
1-3
), pp.
173
182
.10.1016/j.jmatprotec.2007.11.103
35.
Wu
,
S.
,
Fan
,
K.
,
Jiang
,
P.
, and
Chen
,
S.
,
2010
, “
Grain Refinement of Pure Ti During Plastic Deformation
,”
Mater. Sci. Eng., A
,
527
(
26
), pp.
6917
6921
.10.1016/j.msea.2010.06.085
36.
Argon
,
A. S.
, and
Haasen
,
P.
,
1993
, “
A New Mechanism of Work Hardening in the Late Stages of Large Strain Plastic Flow in F.C.C. and Diamond Cubic Crystals
,”
Acta Metall. Mater.
,
41
(
11
), pp.
3289
3306
.10.1016/0956-7151(93)90058-Z
37.
Zhu
,
K. Y.
,
Vassel
,
A.
,
Brisset
,
F.
,
Lu
,
K.
, and
Lu
,
J.
,
2004
, “
Nanostructure Formation Mechanism of [Alpha]-Titanium Using SMAT
,”
Acta Mater.
,
52
(
14
), pp.
4101
4110
.10.1016/j.actamat.2004.05.023
38.
Yang
,
D. K.
,
Cizek
,
P.
,
Hodgson
,
P. D.
, and
Wen
,
C. E.
,
2010
, “
Microstructure Evolution and Nanograin Formation During Shear Localization in Cold-Rolled Titanium
,”
Acta Mater.
,
58
(
13
), pp.
4536
4548
.10.1016/j.actamat.2010.05.007
39.
Zhu
,
Y. T.
,
Huang
,
J. Y.
,
Gubicza
,
J.
,
Ungar
,
T.
,
Wang
,
Y. M.
,
Ma
,
E.
, and
Valiev
,
R. Z.
,
2003
, “
Nanostructures in Ti Processed by Severe Plastic Deformation
,”
J. Mater. Res.
,
18
, pp.
1908
1917
.10.1557/JMR.2003.0267
40.
Zeipper
,
L. F.
,
Zehetbauer
,
M. J.
, and
Holzleithner
,
C.
,
2005
, “
Defect Based Micromechanical Modelling and Simulation of NanoSPD CP-Ti in Post-Deformation
,”
Mater. Sci. Eng., A
,
410-411
, pp.
217
221
.10.1016/j.msea.2005.08.120
41.
Alexandrov
,
I.
,
Chembarisova
,
R.
,
Sitdikov
,
V.
, and
Kazyhanov
,
V.
,
2008
, “
Modeling of Deformation Behavior of SPD Nanostructured CP Titanium
,”
Mater. Sci. Eng.: A
,
493
(
1-2
), pp.
170
175
.10.1016/j.msea.2007.11.073
42.
McKenzie
,
P. W. J.
,
Lapovok
,
R.
, and
Estrin
,
Y.
,
2007
, “
The Influence of Back Pressure on ECAP Processed AA 6016: Modeling and Experiment
,”
Acta Mater.
,
55
(
9
), pp.
2985
2993
.10.1016/j.actamat.2006.12.038
43.
Ungar
,
T.
,
Mughrabi
,
H.
,
Rönnpagel
,
D.
, and
Wilkens
,
M.
,
1984
, “
X-Ray Line-Broadening Study of the Dislocation Cell Structure in Deformed [001]-Orientated Copper Single Crystals
,”
Acta Metall.
,
32
(
3
), pp.
333
342
.10.1016/0001-6160(84)90106-8
44.
Koneva
,
N. A.
,
Starenchenko
,
V. A.
,
Lychagin
,
D. V.
,
Trishkina
,
L. I.
,
Popova
,
N. A.
, and
Kozlov
,
E. V.
,
2008
, “
Formation of Dislocation Cell Substructure in Face-Centred Cubic Metallic Solid Solutions
,”
Mater. Sci. Eng.: A
,
483-484
, pp.
179
183
.10.1016/j.msea.2006.08.140
45.
Knoesen
,
D.
, and
Kritzinger
,
S.
,
1982
, “
Dislocation Cell Boundary Widths and Dislocation Cell Sizes in Deformed Copper
,”
Acta Metall.
,
30
(
6
), pp.
1219
1222
.10.1016/0001-6160(82)90017-7
46.
Schafler
,
E.
,
Zehetbauer
,
M.
,
Borbely
,
A.
, and
Ungar
,
T.
,
1997
, “
Dislocation Densities and Internal Stresses in Large Strain Cold Worked Pure Iron
,”
Mater. Sci. Eng. A
,
234-236
, pp.
445
448
.10.1016/S0921-5093(97)00168-8
47.
Holt
,
D. L.
,
1970
, “
Dislocation Cell Formation in Metals
,”
J. Appl. Phys.
,
41
, pp.
3197
3201
.10.1063/1.1659399
48.
Staker
,
M. R.
, and
Holt
,
D. L.
,
1972
, “
The Dislocation Cell Size and Dislocation Density in Copper Deformed at Temperatures Between 25 and 700 °C
,”
Acta Metall.rgica
,
20
(
4
), pp.
569
579
.10.1016/0001-6160(72)90012-0
49.
Lee
,
W.-S.
, and
Lin
,
C.-F.
,
1998
, “
High-Temperature Deformation Behaviour of Ti6Al4V Alloy Evaluated by High Strain-Rate Compression Tests
,”
J. Mater. Process. Technol.
,
75
(
1-3
), pp.
127
136
.10.1016/S0924-0136(97)00302-6
50.
Yang
,
D. K.
,
Hodgson
,
P. D.
, and
Wen
,
C. E.
,
2010
, “
Simultaneously Enhanced Strength and Ductility of Titanium via Multimodal Grain Structure
,”
Scr. Mater.
,
63
(
9
), pp.
941
944
.10.1016/j.scriptamat.2010.07.010
51.
Prangnell
,
P. B.
,
Bowen
,
J. R.
, and
Apps
,
P. J.
, “
Ultra-Fine Grain Structures in Aluminium Alloys by Severe Deformation Processing
,”
Proceedings of RQ11 Eleventh International Conference on “Rapidly Quenched and Metastable Materials
,” Aug. 25–30, Elsevier, pp.
178
185
.
52.
Sheikh-Ahmad
,
J. Y.
, and
Bailey
,
J. A.
,
1995
, “
A Constitutive Model for Commercially Pure Titanium
,”
ASME J. Eng. Mater. Technol.
,
117
, pp.
139
144
.10.1115/1.2804520
53.
Pei
,
Q. X.
,
Hu
,
B. H.
,
Lu
,
C.
, and
Wang
,
Y. Y.
,
2003
, “
A Finite Element Study of the Temperature Rise During Equal Channel Angular Pressing
,”
Scr. Mater.
,
49
(
4
), pp.
303
308
.10.1016/S1359-6462(03)00284-7
54.
Lampman
,
S.
,
1990
, “
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,”
ASM Handbook
, Vol.
2
,
ASM International
, Materials Park, OH, pp.
592
633
.
55.
Miguélez
,
M. H.
,
Munoz-Sanchez
,
A.
,
Cantero
,
J. L.
, and
Loya
,
J. A.
,
2009
, “
An Efficient Implementation of Boundary Conditions in an ALE Model for Orthogonal Cutting
,”
J. Theor. Appl. Mech.
,
47
(
3
), pp.
599
616
.
56.
Miguélez
,
M. H.
,
Zaera
,
R.
,
Molinari
,
A.
,
Cheriguene
,
R.
, and
Rusinek
,
A.
,
2009
, “
Residual Stresses in Orthogonal Cutting of Metals: The Effect of Thermomechanical Coupling Parameters and of Friction
,”
J. Therm. Stress.
,
32
, pp.
269
289
.10.1080/01495730802637134
57.
abaqus
,
2010
,
abaqus User's Manual
,
Version 6.10, Hibbitt
,
Karlsson & Sorensen, Inc.
,
Pawtucket, RI
.
58.
Mishra
,
A.
,
Kad
,
B. K.
,
Gregori
,
F.
, and
Meyers
,
M. A.
,
2007
, “
Microstructural Evolution in Copper Subjected to Severe Plastic Deformation: Experiments and Analysis
,”
Acta Mater.
,
55
(
1
), pp.
13
28
.10.1016/j.actamat.2006.07.008
You do not currently have access to this content.