Researchers commonly develop notched drill points with secondary cutting edges that have unusual specifications; however, mathematical models cannot comprehensively specify these thinned/notched drill points. In an earlier work (Lin, P. D., and Tzeng, C. S., 2007, “New Method for Determination of the Pose of the Grinding Wheel for Thinning Drill Points,” Int. J. Mach. Tools Manuf., 47(15), pp. 2218–2229), precise mathematical modeling for drill design and one-wheel grinding of ISO-standard drills with linear secondary cutting edges was presented. That model is expanded herein to drill points with a specifiable secondary cutting edge and characteristic angle distribution. Optionally, the entire cutting edge (primary, secondary, and chisel edges) can be provided with C1 continuity to eliminate stress concentration points. The mathematical background and modeling are summarized in this study. Experimental drills are produced and tested for verification and demonstration. The presented modeling technique allows subsequent researchers to exactly duplicate the drills, including the thinning/notching drill points, a capability that was previously unavailable. This system is useful for improved drill CAD and CNC software for the design, manufacture, reconditioning, and research of novel point design.

References

References
1.
Lin
,
P. D.
, and
Tzeng
,
C. S.
,
2007
, “
New Method for Determination of the Pose of the Grinding Wheel for Thinning Drill Points
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2218
2229
.10.1016/j.ijmachtools.2007.07.006
2.
Wang
,
G. C.
, and
Fuh
,
K. H.
,
2001
, “
A New Mathematical Model for Multifacet Drills Derived by Using Angle-Solid Model
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
103
132
.10.1016/S0890-6955(00)00053-5
3.
Radhakrishnan
,
T.
,
Kawlra
,
R. K.
, and
Wu
,
S. M.
,
1982
, “
A Mathematical Model of the Grinding Wheel Profile Required for a Specific Twist Drill Flute
,”
Int. J. Mach. Tools Manuf.
,
22
, pp.
239
251
.10.1016/0020-7357(82)90001-4
4.
Chen
,
L. H.
, and
Wu
,
S. M.
,
1984
, “
Further Investigation of Multifacet Drills—Mathematical Models, Methods of Grinding, and Computer Plotting
,”
ASME J. Eng. Ind.
,
106
, pp.
313
324
.10.1115/1.3185953
5.
Kang
,
S. K.
,
Ehmann
,
K. F.
, and
Lin
,
C.
,
1996
, “
A CAD Approach to Helical Groove Machining Part 1: Mathematical Model and Model Solution
,”
Int. J. Mach. Tools Manuf.
,
36
, pp.
141
153
.10.1016/0890-6955(95)92631-8
6.
Kang
,
D.
, and
Armarego
,
E. J. A.
,
2003
, “
Computer-Aided Geometrical Analysis of the Fluting Operation for Twist Drill Design and Production. Part I: Forward Analysis and Generated Flute Profile
,”
Mach. Sci. Technol.
,
7
(
2
), pp.
221
248
.10.1081/MST-120022779
7.
Kang
,
D.
, and
Armarego
,
E. J. A.
,
2003
, “
Computer-Aided Geometrical Analysis of the Fluting Operation for Twist Drill Design and Production. Part II: Backward Analysis, Wheel Profile, and Simulation Studies
,”
Mach. Sci. Technol.
,
7
(
2
), pp.
249
266
.10.1081/MST-120022780
8.
Bhowmick
,
S.
, and
Alpas
,
A. T.
,
2013
, “
The Performance of Diamond-Like Carbon Coated Drills in Thermally Assisted Drilling of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
, p.
061019
.10.1115/1.4025739
9.
Sambhav
,
K.
,
Tandon
,
P.
,
Kapoor
,
S. G.
, and
Dhande
,
S. G.
,
2013
, “
Mathematical Modeling of Cutting Forces in Microdrilling
,”
ASME J. Manuf. Sci. Eng.
,
135
, p.
014501
.10.1115/1.4007955
10.
Çiçek
,
A.
,
Uygur
,
I.
,
Kıvak
,
T.
, and
Özbek
,
N. A.
,
2012
, “
Machinability of AISI 316 Austenitic Stainless Steel With Cryogenically Treated M35 High-Speed Steel Twist Drills
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
061003
.10.1115/1.4007620
11.
Tai
,
B. L.
,
Stephenson
,
D. A.
, and
Shih
,
A. J.
,
2012
, “
An Inverse Heat Transfer Method for Determining Workpiece Temperature in Minimum Quantity Lubrication Deep Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
021006
.10.1115/1.4005794
12.
Okasha
,
M. M.
,
Mativenga
,
P. T.
, and
Li
,
L.
,
2011
, “
Sequential Laser Mechanical Microdrilling of Inconel 718 Alloy
,”
ASME J. Manuf. Sci. Eng.
,
133
, p.
011008
.10.1115/1.4003334
13.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2010
, “
A Model for Bending, Torsional, and Axial Vibrations of Micro- and Macro-Drills Including Actual Drill Geometry—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
041017
.10.1115/1.4001720
14.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2010
, “
A Model for Bending, Torsional, and Axial Vibrations of Micro- and Macro-Drills Including Actual Drill Geometry—Part II: Model Validation and Application
,”
ASME J. Manuf. Sci. Eng.
,
132
, p.
041018
.10.1115/1.4001721
15.
Koehler
,
W.
,
2008
, “
Analysis of the High Performance Drilling Process: Influence of Shape and Profile of the Cutting Edge of Twist Drills
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
051001
.10.1115/1.2951932
16.
Maxey
,
R.
,
1999
, “
High Performance Twist Drills in Perspective
,”
Mod. Mach. Shop
,
72
(
1
), pp.
72
83
. Available at http://www.mmsonline.com/articles/high-performance-twist-drills-in-perspective
17.
Armarego
,
E. J. A.
, and
Zhao
,
H.
,
1996
, “
Predictive Force Models for Point-Thinned and Circular Centre Edge Twist Drill Designs
,”
Ann. CIRP
,
45
(
1
), pp.
65
70
.10.1016/S0007-8506(07)63018-2
18.
Zhao
,
H.
,
1989
, “
Study of a High Performance Drill Geometry
,”
Ann. CIRP
,
38
(
1
), pp.
87
90
.10.1016/S0007-8506(07)62657-2
19.
Fuh
,
K. H.
, and
Chen
,
W. C.
,
1995
, “
Cutting Performance of Thick Web Drills With Curved Primary Cutting Edges
,”
Int. J. Mach. Tools Manuf.
,
35
(
7
), pp.
975
991
.10.1016/0890-6955(94)00041-H
20.
Radhakrishnan
,
T.
,
Wu
,
S. M.
, and
Lin
,
C.
,
1983
, “
A Mathematical Model for Split Point Drill Flanks
,”
ASME J. Eng. Ind.
,
105
, pp.
137
142
.10.1115/1.3185879
21.
Wu
,
S. M.
, and
Shen
,
J. M.
,
1983
, “
Mathematical Model for Multifacet Drills
,”
ASME J. Eng. Ind.
,
105
, pp.
173
182
.10.1115/1.3185885
22.
Hsieh
,
J. F.
, and
Lin
,
P. D.
,
2003
, “
Production of Multi-Flute Drills on 6-Axis CNC Tool Grinding Machine
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
1117
1127
.10.1016/S0890-6955(03)00121-4
23.
Wang
,
J.
, and
Zhang
,
Q.
,
2008
, “
A Study of High Performance Plane Rake Faced Twist Drills. Part I: Geometrical Analysis and Experimental Investigation
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
1276
1285
.10.1016/j.ijmachtools.2008.03.005
24.
Wang
,
J.
, and
Zhang
,
Q.
,
2008
, “
A Study of High-Performance Plane Rake Faced Twist Drills. Part II Predictive Force Models
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
1286
1295
.10.1016/j.ijmachtools.2008.03.006
25.
Paul
,
R. P.
,
1982
,
Robot Manipulators—Mathematics, Programming and Control
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.