Porous materials with well-defined pore shapes, sizes and distributions are highly desired in many emerging applications, particularly for biomedical materials and devices. However, conventional methods for processing porous materials only demonstrated limited capability in morphological control. One promising solution is the porogen templating process, where a structured porogen pattern is created first and subsequently used as a template or mold for generation of the desired porous material. Particularly, with solid freeform fabrication, porogen templates having complex internal structures can be additively fabricated, and they can then be used as molds for molding of porous materials and devices. This article attempts to offer a constructive overview on the state of the art of porogen patterning and inverse molding, with the goal of explaining the working mechanisms and providing unbiased accounts of the pros and cons of existing techniques and process variants. The article further intends to provide a fundamental understanding of the constituent elements and corresponding building blocks in porogen templating processes. An increased understanding of these elements will facilitate the development of more capable new processes.

References

References
1.
Dhandayuthapani
,
B.
, Yoshida, Y., Maekawa, T., and Kumar, D. S.,
2011
, “
Polymeric Scaffolds in Tissue Engineering Application: A Review
,”
Int. J. Polym. Sci.
,
2011
, p.
290602
.10.1155/2011/290602
2.
Landy
,
B. C.
,
Van Gordon
,
S. B.
,
McFetridge
,
P. S.
,
Sikavitsas
,
V. I.
, and
Jarman-Smith
,
M.
,
2013
, “
Mechanical and in vitro Investigation of a Porous PEEK Foam for Medical Device Implants
,”
J. Appl. Biomater. Funct. Mater.
,
11
(
1
), pp.
35
44
.10.5301/JABFM.2012.9771
3.
Liu
,
Z. H.
,
Yi
,
Y.
,
Gauczinski
,
J.
,
Xu
,
H. P.
,
Schonhoff
,
M.
, and
Zhang
,
X.
,
2011
, “
Surface Molecular Imprinted Layer-by-Layer Film Attached to a Porous Membrane for Selective Filtration
,”
Langmuir
,
27
(
19
), pp.
11806
11812
.10.1021/la202093s
4.
Garcia-Belmonte
,
G.
,
Bisquert
,
J.
,
Pereira
,
E. C.
, and
Fabregat-Santiago
,
F.
,
2001
, “
Anomalous Transport on Polymeric Porous Film Electrodes in the Dopant-Induced Insulator-to-Conductor Transition Analyzed by Electrochemical Impedance
,”
Appl. Phys. Lett.
,
78
(
13
), pp.
1885
1887
.10.1063/1.1354671
5.
Fritz Ullmann
,
W. G.
,
Yamamoto
,
Y. S.
,
Campbell
,
F. T.
,
1985
,
Ullmann's Encyclopedia of Industrial Chemistry
, Wiley-VCH, Weinheim, Germany.
6.
Mark
,
H. F.
, and
Kroschwitz
,
J. I.
,
1985
,
Encyclopedia of Polymer Science and Engineering
,”
2nd ed.
,
Wiley
,
New York
.
7.
Sharma
,
A. C.
, and
Borovik
,
A. S.
,
2000
, “
Design, Synthesis, and Characterization of Templated Metal Sites in Porous Organic Hosts: Application to Reversible Dioxygen Binding
,”
J. Am. Chem. Soc.
,
122
(
37
), pp.
8946
8955
.10.1021/ja0014739
8.
Lu
,
W. G.
,
Yuan
,
D. Q.
,
Zhao
,
D.
,
Schilling
,
C. I.
,
Plietzsch
,
O.
,
Muller
,
T.
,
Brase
,
S.
,
Guenther
,
J.
,
Blumel
,
J.
,
Krishna
,
R.
,
Li
,
Z.
, and
Zhou
,
H. C.
,
2010
, “
Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
,”
Chem. Mater.
,
22
(
21
), pp.
5964
5972
.10.1021/cm1021068
9.
Simms
,
H. M.
,
Brotherton
,
C. M.
,
Good
,
B. T.
,
Davis
,
R. H.
,
Anseth
,
K. S.
, and
Bowman
,
C. N.
,
2005
, “
In Situ Fabrication of Macroporous Polymer Networks Within Microfluidic Devices by Living Radical Photopolymerization and Leaching
,”
Lab Chip
,
5
(
2
), pp.
151
157
.10.1039/b412589d
10.
Hutmacher
,
D. W.
,
2001
, “
Scaffold Design and Fabrication Technologies for Engineering Tissues—State of the Art and Future Perspectives
,”
J. Biomater. Sci., Polym. Ed.
,
12
(
1
), pp.
107
124
.10.1163/156856201744489
11.
Yan
,
X.
, and
Gu
,
P.
,
1996
, “
A Review of Rapid Prototyping Technologies and Systems
,”
Comput.-Aided Des.
,
28
(
4
), pp.
307
318
.10.1016/0010-4485(95)00035-6
12.
Medellin-Castillo
,
H. I.
, and
Torres
,
J. E. P.
,
2010
, “
Rapid Prototyping and Manufacturing: A Review of Current Technologies
,”
IMECE2009
, Vol.
4
, pp.
609
621
.
13.
Lan
,
H.
,
2009
, “
Web-Based Rapid Prototyping and Manufacturing Systems: A Review
,”
Comput. Ind.
,
60
(
9
), pp.
643
656
.10.1016/j.compind.2009.05.003
14.
Yang
,
D. Y.
,
Lim
,
T. W.
,
Son
,
Y.
,
Kong
,
H. J.
,
Lee
,
K. S.
,
Kim
,
D. P.
, and
Park
,
S. H.
,
2007
, “
Additive Process Using Femto-Second Laser for Manufacturing Three-Dimensional Nano/Micro-Structures
,”
Int. J. Precis. Eng. Manuf.
,
8
(
4
), pp.
63
69
.
15.
Peltola
,
S. M.
, Melchels, F. P. W., Grijpma, D. W., and Kellomaki, M.,
2008
, “
A Review of Rapid Prototyping Techniques for Tissue Engineering Purposes
,”
Ann. Med.
,
40
(
4
), pp.
268
280
.10.1080/07853890701881788
16.
Mondrinos
,
M. J.
, Dembzynski, R., Lu, L., Byrapogu, V. K. C., Wootton, D. M., Lelkes, P. I., and Zhou, J.,
2006
, “
Porogen-Based Solid Freeform Fabrication of Polycaprolactone-Calcium Phosphate Scaffolds for Tissue Engineering
,”
Biomaterials
,
27
(
25
), pp.
4399
4408
.10.1016/j.biomaterials.2006.03.049
17.
Lu
,
L.
, Zhou, J., Mondrinos, M., Lelkes, P., and Wootton, D.,
2008
,
Porogen Based Solid Freeform Fabrication of Polycaprolactone-Calcium Phosphate Scaffolds for Tissue Engineering, Virtual Rapid Manufacturing
, Taylor and Francis, London, pp.
87
96
.
18.
Kang
,
H. W.
, and
Cho
,
D. W.
,
2012
, “
Development of an Indirect Stereolithography Technology for Scaffold Fabrication With a Wide Range of Biomaterial Selectivity
,”
Tissue Eng. Part C
,
18
(
9
), pp.
719
729
.10.1089/ten.tec.2011.0621
19.
Hollister
,
S. J.
,
Maddox
,
R. D.
, and
Taboas
,
J. M.
,
2002
, “
Optimal Design and Fabrication of Scaffolds to Mimic Tissue Properties and Satisfy Biological Constraints
,”
Biomaterials
,
23
(
20
), pp.
4095
4103
.10.1016/S0142-9612(02)00148-5
20.
Lee
,
M.
,
Dunn
,
J. C. Y.
, and
Wu
,
B. M.
,
2005
, “
Scaffold Fabrication by Indirect Three-Dimensional Printing
,”
Biomaterials
,
26
(
20
), pp.
4281
4289
.10.1016/j.biomaterials.2004.10.040
21.
Taboas
,
J. M.
, Maddox, R. D., Krebsbach, P. H., and Hollister, S. J.,
2003
, “
Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-Ceramic Scaffolds
,”
Biomaterials
,
24
(
1
), pp.
181
194
.10.1016/S0142-9612(02)00276-4
22.
Hong
,
Y.
,
Zhou
,
J. G.
, and
Yao
,
D.
,
2013
, “
Fabrication of Interconnected Porous Elastomers by A Microsphere-Templating Process
,”
Adv. Polym. Technol.
,
31
(
1
), pp.
21330
21341
.10.1002/adv.21330
23.
Uchida
,
T.
,
Oura
,
H.
,
Ikeda
,
S.
,
Arai
,
F.
,
Negor
,
M.
, and
Fukuda
,
T.
,
2008
, “
Fabrication of Biodegradable Scaffolds by Use of Self-Assembled Magnetic Sugar Particles as a Casting Template
,”
2008 IEEE International Conference on Robotics and Automation
, Vols. 1–9, pp.
413
418
.
24.
Esposito
,
E.
,
Cortesi
,
R.
, and
Nastruzzi
,
C.
,
1996
, “
Gelatin Microspheres: Influence of Preparation Parameters and Thermal Treatment on Chemico-Physical and Biopharmaceutical Properties
,”
Biomaterials
,
17
(
20
), pp.
2009
2020
.10.1016/0142-9612(95)00325-8
25.
Blaker
,
J. J.
,
Knowles
,
J. C.
, and
Day.
R. M.
,
2008
, “
Novel Fabrication Techniques to Produce Microspheres by Thermally Induced Phase Separation for Tissue Engineering and Drug Delivery
,”
Acta Biomater.
,
4
(
2
), pp.
264
272
.10.1016/j.actbio.2007.09.011
26.
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Additive Fabrication Technologies Applied to Medicine and Health Care: A Review
,”
Int. J. Adv. Manuf. Technol.
,
40
(
1-2
), pp.
116
127
.10.1007/s00170-007-1308-1
27.
Tadmor
,
Z.
,
2002
, “
Machine Invention, Innovation, and Elementary Steps
,”
Adv. Polym. Technol.
,
21
(
2
), pp.
87
97
.10.1002/adv.10018
28.
Seol
,
Y. J.
,
Kang
,
T. Y.
, and
Cho
,
D. W.
,
2012
, “
Solid Freeform Fabrication Technology Applied to Tissue Engineering With Various Biomaterials
,”
Soft Matter
,
8
(
6
), pp.
1730
1735
.10.1039/c1sm06863f
29.
Liu
,
C.
,
Xia
,
Z.
, and
Czernuszka
J. T.
,
2007
, “
Design and Development of Three-Dimensional Scaffolds for Tissue Engineering
,”
Chem. Eng. Res. Des.
,
85
(A
7
), pp.
1051
1064
.10.1205/cherd06196
30.
Weigel
,
T.
,
Schinkel
,
G.
, and
Lendlein
,
A.
,
2006
, “
Design and Preparation of Polymeric Scaffolds for Tissue Engineering
,”
Expert Rev. Med. Devices
,
3
(
6
), pp.
835
851
.10.1586/17434440.3.6.835
31.
Zhou
,
J. G.
, and
Lu
,
L.
,
2011
, “
Biomimetic Structured Porogen Freeform Fabrication System for Tissue Engineering
,”
On Biomimetics
,
L. D.
Pramatarova
, ed.,
InTech.
,
Rijeka, Croatia
, pp.
53
90
.
32.
Sachlos
,
E.
,
Reis
,
N.
,
Ainsley
,
C.
,
Derby
,
B.
, and
Czernuszka
,
J. T.
,
2003
, “
Novel Collagen Scaffolds With Predefined Internal Morphology Made by Solid Freeform Fabrication
,”
Biomaterials
,
24
(
8
), pp.
1487
1497
.10.1016/S0142-9612(02)00528-8
33.
Yeong
,
W. Y.
,
Chua
,
C. K.
,
Leong
,
K. F.
,
Chandrasekaran
,
M.
, and
Lee
,
M. W.
,
2006
, “
Indirect Fabrication of Collagen Scaffold Based on Inkjet Printing Technique
,”
Rapid Prototyping J.
,
12
(
4
), pp.
229
237
.10.1108/13552540610682741
34.
Lu
,
L.
,
Zhang
,
Q. W.,
Wootton
,
D.
,
Lelkes
,
P. I.
, and
Zhou
,
J.
,
2010
, “
A Novel Sucrose Porogen-Based Solid Freeform Fabrication System for Bone Scaffold Manufacturing
,”
Rapid Prototyping J.
,
16
(
5
), pp.
365
376
.10.1108/13552541011065768
35.
Lu
,
L.
,
Zhang
,
Q. W.
,
Wootton
,
D.
,
Chiou
,
R.
,
Li
,
D. C.
,
Lu
,
B. H.
,
Lelkes
,
P.
, and
Zhou
,
J.
,
2012
, “
Biocompatibility and Biodegradation Studies of PCL/beta-TCP Bone Tissue Scaffold Fabricated by Structural Porogen Method
,”
J. Mater. Sci.: Mater. Med.
,
23
(
9
), pp.
2217
2226
.10.1007/s10856-012-4695-2
36.
Kawata
,
S.
,
Sun
,
H. B.
,
Tanaka
,
T.
, and
Takada
,
K.
,
2001
, “
Finer Features for Functional Microdevices—Micromachines can be Created With Higher Resolution Using Two-Photon Absorption
,”
Nature
,
412
(
6848
), pp.
697
698
.10.1038/35089130
37.
Lee
,
S. H.
,
Moon
,
J. J.
, and
West
,
J. L.
,
2008
, “
Three-Dimensional Micropatterning of Bioactive Hydrogels via Two-Photon Laser Scanning Photolithography for Guided 3D Cell Migration
,”
Biomaterials
,
29
(
20
), pp.
2962
2968
.10.1016/j.biomaterials.2008.04.004
38.
Tanodekaew
,
S.
,
Channasanon
,
S.
,
Kaewkong
,
P.
, and
Uppanan
,
P.
,
2013
, “
PLA-HA Scaffolds, Preparation and Bioactivity
,”
3rd International Conference on Tissue Engineering
,
P.
Bartolo
and
P.
Fernandes
, eds.,
Elsevier Science Bv
,
Amsterdam
, pp.
144
149
.
39.
Melissinaki
,
V.
,
Gill
,
A. A.
,
Ortega
,
I.
,
Vamvakaki
,
M.
,
Ranella
,
A.
,
Haycock
,
J. W.
,
Fotakis
,
C.
,
Farsari
,
M.
, and
Claeyssens
,
F.
,
2011
, “
Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications
,”
Biofabrication.
3
(
4
), p.
045005.
10.1088/1758-5082/3/4/045005
40.
Malinauskas
,
M.
,
Danilevicius
,
P.
,
Baltriukiene
,
D.
,
Rutkauskas
,
M.
,
Zukauskas
,
A.
,
Kairyte
,
Z.
,
Bickauskaite
,
G.
,
Purlys
,
V.
,
Paipulas
,
D.
,
Bukelskiene
,
V.
, and
Gadonas
,
R.
,
2010
, “
3D Artificial Polymeric Scaffolds for Stem Cell Growth Fabricated by Femtosecond Laser
,”
Lithuanian J. Phys.
,
50
(
1
), pp.
75
82
.10.3952/lithjphys.50121
41.
Engelhardt
,
S.
,
Hoch
,
E.
,
Borchers
,
K.
,
Meyer
,
W.
,
Kruger
,
H.
,
Tovar
,
G. E. M.
, and
Gillner
,
A.
,
2011
, “
Fabrication of 2D Protein Microstructures and 3D Polymer-Protein Hybrid Microstructures by Two-Photon Polymerization
,”
Biofabrication
,
3
(
2
), p.
025003
.10.1088/1758-5082/3/2/025003
42.
Lee
,
S. J.
,
Kang
,
H. W.
,
Park
,
J. K.
,
Rhie
,
J. W.
,
Hahn
,
S. K.
, and
Cho,
D. W.
,
2008
, “
Application of Microstereolithography in the Development of Three-Dimensional Cartilage Regeneration Scaffolds
,”
Biomed. Microdevices
,
10
(
2
), pp.
233
241
.10.1007/s10544-007-9129-4
43.
Johnson
,
D. W.
,
Sherborne
,
C.
,
Didsbury
,
M. P.
,
Pateman
,
C.
,
Cameron
,
N. R.
, and
Claeyssens
,
F.
,
2013
, “
Macrostructuring of Emulsion-Templated Porous Polymers by 3D Laser Patterning
,”
Adv. Mater.
,
25
(
23
), pp.
3178
3181
.10.1002/adma.201300552
44.
Ronca
,
A.
,
Ambrosio
,
L.
, and
Grijpma
,
D. W.
,
2013
, “
Preparation of Designed Poly(D,L-Lactide)/Nanosized Hydroxyapatite Composite Structures by Stereolithography
,”
Acta Biomater.
,
9
(
4
), pp.
5989
5996
.10.1016/j.actbio.2012.12.004
45.
Liska
,
R.
,
Schwager
,
F.
,
Maier
,
C.
,
Cano-Vives
,
R.
, and
Stampfl
,
J.
,
2005
, “
Water-Soluble Photopolymers for Rapid Prototyping of Cellular Materials
,”
J. Appl. Polym. Sci.
,
97
(
6
), pp.
2286
2298
.10.1002/app.22025
46.
Chu
,
T. M. G.
,
Orton
,
D. G.
,
Hollister
,
S. J.
,
Feinberg
,
S. E.
, and
Halloran
,
J. W.
,
2002
, “
Mechanical and in vivo Performance of Hydroxyapatite Implants With Controlled Architectures
,”
Biomaterials
,
23
(
5
), pp.
1283
1293
.10.1016/S0142-9612(01)00243-5
47.
Chu
,
T. M. G.
, Halloran, J. W., Hollister, S. J., and Feinberg, S. E.,
2001
, “
Hydroxyapatite Implants With Designed Internal Architecture
,”
J. Mater. Sci.: Mater. Med.
,
12
(
6
), pp.
471
478
.10.1023/A:1011203226053
48.
Li
,
X.
, Li, D. C., Lu, B. H., Tang, Y. P., Wang, L., and Wang, Z.,
2005
, “
Design and Fabrication of CAP Scaffolds by Indirect Solid Free Form Fabrication
,”
Rapid Prototyping J.
,
11
(
5
), pp.
312
318
.10.1108/13552540510623639
49.
Vacanti
,
J. P.
, Sodian, R., Sperling, J. S., Martin, D. P., Egozy, A., Stock, U., and Mayer, J. E.,
2000
, “
Fabrication of a Trileaflet Heart Valve Scaffold From a Polyhydroxyalkanoate Biopolyester for Use in Tissue Engineering
,”
Tissue Eng.
,
6
(
2
), pp.
183
188
.10.1089/107632700750022116
50.
Leung
,
L.
, Chan, C., Baek, S., and Naguib, H.,
2008
, “
Comparison of Morphology and Mechanical Properties of PLGA Bioscaffolds
,”
Biomed. Mater.
,
3
(
2
), p.
025006
.10.1088/1748-6041/3/2/025006
51.
Wagner
,
W. R.
, Baraniak, P. R., Nelson, D. M., Leeson, C. E., Katakam, A. K., Friz, J. L., Cress, D. E., Hong, Y., and Guan, J. J.,
2011
, “
Spatial Control of Gene Expression Within a Scaffold by Localized Inducer Release
,”
Biomaterials
,
32
(
11
), pp.
3062
3071
.10.1016/j.biomaterials.2010.12.037
52.
Sadiasa
,
A.
,
Nguyen
,
T. H.
, and
Lee
,
B. T.
,
2014
, “
In vitro and in vivo Evaluation of Porous PCL-PLLA 3D Polymer Scaffolds Fabricated via Salt Leaching Method for Bone Tissue Engineering Applications
,”
J. Biomater. Sci., Polym. Ed.
,
25
(
2
), pp.
150
167
.10.1080/09205063.2013.846633
53.
Zhang
,
J. C.
,
Wu
,
L. B.
,
Jing
,
D. Y.
, and
Ding
,
J. D.
,
2005
, “
A Comparative Study of Porous Scaffolds With Cubic and Spherical Macropores
,”
Polymer
,
46
(
13
), pp.
4979
4985
.10.1016/j.polymer.2005.02.120
54.
Tran
,
R. T.
,
Naseri
,
E.
,
Kolasnikov
,
A.
,
Bai
,
X. C.
, and
Yang
,
J.
,
2011
, “
A New Generation of Sodium Chloride Porogen for Tissue Engineering
,”
Biotechnol. Appl. Biochem.
,
58
(
5
), pp.
335
344
.10.1002/bab.44
55.
Tang
,
G. W.
,
Zhang
,
H.
,
Zhao
,
Y. H.
,
Zhang
,
Y.
,
Li
,
X. L.
, and
Yuan
,
X. Y.
,
2012
, “
Preparation of PLGA Scaffolds With Graded Pores by Using a Gelatin-Microsphere Template as Porogen
,”
J. Biomater. Sci., Polym. Ed.
,
23
(
17
), pp.
2241
2257
.10.1163/156856211X614185
56.
Li
,
J. S.
,
Yuan
,
X. Y.
,
He
,
F.
, and
Mak
,
A. F. T.
,
2008
, “
Hybrid Coating of Hydroxyapatite and Collagen Within Poly(D,L-Lactic-Co-Glycolic Acid) Scaffold
,”
J. Biomed. Mater. Res. Part B
,
86B
(
2
), pp.
381
388
.10.1002/jbm.b.31031
57.
Ma
,
Z. W.
,
Gao
,
C. Y.
,
Gong
,
Y. H.
, and
Shen
,
J. C.
,
2003
, “
Paraffin Spheres as Porogen to Fabricate Poly(L-Lactic Acid) Scaffolds With Improved Cytocompatibility for Cartilage Tissue Engineering
,”
J. Biomed. Mater. Res. Part B
,
67B
(
1
), pp.
610
617
.10.1002/jbm.b.10049
58.
Ma
,
P. X.
, and
Choi
,
J. W.
,
2001
, “
Biodegradable Polymer Scaffolds With Well-Defined Interconnected Spherical Pore Network
,”
Tissue Eng.
,
7
(
1
), pp.
23
33
.10.1089/107632701300003269
59.
Guo
,
L. Y.
,
Zhang
,
J. W.
,
Zhao
,
J.
,
Wang
,
J. X.
,
Weng
,
J.
, and
Zhang
,
C.
,
2011
, “
Preparation and Characterization of Porous Scaffolds With Favourable Interpore Connectivity
,”
J. Inorg. Mater.
,
26
(
1
), pp.
17
21
.10.3724/SP.J.1077.2011.00017
60.
Wei
,
G. B.
, and
Ma
,
P. X.
,
2006
, “
Macroporous and Nanofibrous Polymer Scaffolds and Polymer/Bone-Like Apatite Composite Scaffolds Generated by Sugar Spheres
,”
J. Biomed. Mater. Res. Part A
,
78A
(
2
), pp.
306
315
.10.1002/jbm.a.30704
61.
Vaquette
,
C.
,
Frochot
,
C.
,
Rahouadj
,
R.
, and
Wang
,
X.
,
2008
, “
An Innovative Method to Obtain Porous PLLA Scaffolds With Highly Spherical and Interconnected Pores
,”
J. Biomed. Mater. Res. Part B
,
86B
(
1
), pp.
9
17
.10.1002/jbm.b.30982
62.
Hou
,
Q. P.
,
Grijpma
,
D. W.
, and
Feijen
,
J.
,
2003
, “
Preparation of Interconnected Highly Porous Polymeric Structures by a Replication and Freeze-Drying Process
,”
J. Biomed. Mater. Res. Part B
,
67B
(
2
), pp.
732
740
.10.1002/jbm.b.10066
63.
Yang
,
Y.
,
Zhao
,
J.
,
Zhao
,
Y.
,
Wen
,
L.
,
Yuan
,
X.
, and
Fan
,
Y.
,
2008
, “
Formation of Porous PLGA Scaffolds by a Combining Method of Thermally Induced Phase Separation and Porogen Leaching
,”
J. Appl. Polym. Sci.
,
109
(
2
), pp.
1232
1241
.10.1002/app.28147
64.
Liu
,
X. H.
,
Won
,
Y. J.
, and
Ma
,
P. X.
,
2006
, “
Porogen-Induced Surface Modification of Nano-Fibrous Poly(L-Lactic Acid) Scaffolds for Tissue Engineering
,”
Biomaterials
,
27
(
21
), pp.
3980
3987
.10.1016/j.biomaterials.2006.03.008
65.
Thomson
,
R. C.
,
Yaszemski
,
M. J.
,
Powers
,
J. M.
, and
Mikos
,
A. G.
,
1995
, “
Fabrication of Biodegradable Polymer Scaffolds to Engineer Trabecular Bone
,”
J. Biomater. Sci., Polym. Ed.
,
7
(
1
), pp.
23
38
.10.1163/156856295X00805
66.
Thomson
,
R. C.
,
Yaszemski
,
M. J.
,
Powers
,
J. M.
, and
Mikos
,
A. G.
,
1998
, “
Hydroxyapatite Fiber Reinforced Poly(Alpha-Hydroxy Ester) Foams for Bone Regeneration
,”
Biomaterials
,
19
(
21
), pp.
1935
1943
.10.1016/S0142-9612(98)00097-0
67.
Ko
,
Y. G.
,
Grice
,
S.
,
Kawazoe
,
N.
,
Tateishi
,
T.
, and
Chen
,
G. P.
,
2010
, “
Preparation of Collagen-Glycosaminoglycan Sponges With Open Surface Porous Structures Using Ice Particulate Template Method
,”
Macromol. Biosci.
,
10
(
8
), pp.
860
871
.10.1002/mabi.200900468
68.
Ko
,
Y. G.
,
Kawazoe
,
N.
,
Tateishi
,
T.
, and
Chen
,
G. P.
,
2010
, “
Preparation of Novel Collagen Sponges Using an Ice Particulate Template
,”
J. Bioact. Compat. Polym.
,
25
(
4
), pp.
360
373
.10.1177/0883911510370002
69.
Lu
,
H. X.
,
Ko
,
Y. G.
,
Kawazoe
,
N.
, and
Chen
,
G. P.
,
2010
, “
Cartilage Tissue Engineering Using Funnel-Like Collagen Sponges Prepared With Embossing Ice Particulate Templates
,”
Biomaterials
,
31
(
22
), pp.
5825
5835
.10.1016/j.biomaterials.2010.04.019
70.
Ko
,
Y. G.
,
Oh
,
H. H.
,
Kawazoe
,
N.
,
Tateishi
,
T.
, and
Chen
,
G. P.
,
2011
, “
Preparation of Open Porous Hyaluronic Acid Scaffolds for Tissue Engineering Using the Ice Particulate Template Method
,”
J. Biomater. Sci., Polym. Ed.
,
22
(
1-3
), pp.
123
138
.10.1163/092050609X12580983951602
71.
Freitas
,
S.
,
Merkle
,
H. P.
, and
Gander
,
B.
,
2005
, “
Microencapsulation by Solvent Extraction/Evaporation: Reviewing the State of the Art of Microsphere Preparation Process Technology
,”
J. Controlled Release
,
102
(
2
), pp.
313
332
.10.1016/j.jconrel.2004.10.015
72.
Bigi
,
A.
,
Boanini
,
E.
,
Panzavolta
,
S.
,
Roveri
,
N.
, and
Rubini
,
K.
,
2002
, “
Bonelike Apatite Growth on Hydroxyapatite-Gelatin Sponges From Simulated Body Fluid
,”
J. Biomed. Mater. Res.
,
59
(
4
), pp.
709
715
.10.1002/jbm.10045
73.
Liu
,
X.
,
Smith
,
L. A.
,
Hu
,
J.
, and
Ma
,
P. X.
,
2009
, “
Biomimetic Nanofibrous Gelatin/Apatite Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
30
(
12
), pp.
2252
2258
.10.1016/j.biomaterials.2008.12.068
74.
Zhou
,
Q. L.
,
Gong
,
Y. H.
, and
Gao
,
C. Y.
,
2005
, “
Microstructure and Mechanical Properties of Poly(L-Lactide) Scaffolds Fabricated by Gelatin Particle Leaching Method
,”
J. Appl. Polym. Sci.
,
98
(
3
), pp.
1373
1379
.10.1002/app.22289
75.
Adhirajan
,
N.
,
Shanmugasundaram
,
N.
,
Shanmuganathan
,
S.
, and
Babu
,
M.
,
2009
, “
Functionally Modified Gelatin Microspheres Impregnated Collagen Scaffold as Novel Wound Dressing to Attenuate the Proteases and Bacterial Growth
,”
Eur. J. Pharm. Sci.
,
36
(
2-3
), pp.
235
245
.10.1016/j.ejps.2008.09.010
76.
Habraken
,
W.
,
Boerman
,
O. C.
,
Wolke
,
J. G. C.
,
Mikos
,
A. G.
, and
Jansen
,
J. A.
,
2009
, “
In vitro Growth Factor Release From Injectable Calcium Phosphate Cements Containing Gelatin Microspheres
,”
J. Biomed. Mater. Res. Part A
,
91A
(
2
), pp.
614
622
.10.1002/jbm.a.32263
77.
Kimura
,
Y.
,
Tsuji
,
W.
,
Yamashiro
,
H.
,
Toi
,
M.
,
Inamoto
,
T.
, and
Tabata
,
Y.
,
2010
, “
In Situ Adipogenesis in Fat Tissue Augmented by Collagen Scaffold With Gelatin Microspheres Containing Basic Fibroblast Growth Factor
,”
J. Tissue Eng. Regener. Med.
,
4
(
1
), pp.
55
61
.10.1002/term.218
78.
Agrawal
,
C. M.
,
Karande
,
T. S.
, and
Ong
,
J. L.
,
2004
, “
Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1728
1743
.10.1007/s10439-004-7825-2
79.
Murphy
,
W. L.
, Dennis, R. G., Kileny, J. L., and Mooney, D. J.,
2002
, “
Salt Fusion: An Approach to Improve Pore Interconnectivity Within Tissue Engineering Scaffolds
,”
Tissue Eng.
,
8
(
1
), pp.
43
52
.10.1089/107632702753503045
80.
Chen
,
S.
,
Baker
,
I.
, and
Frost
,
H. J.
,
2013
, “
Surface Instability and Mass Transfer During the Bonding of Ice Spheres
,”
Philos. Mag.
,
93
(
23
), pp.
3177
3193
.10.1080/14786435.2013.805274
81.
Wei
,
G.
, and
Ma
,
P. X.
,
2009
, “
Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds
,”
Biomaterials
,
30
(
32
), pp.
6426
6434
.10.1016/j.biomaterials.2009.08.012
82.
Hong
,
Y.
, and
Yao
,
D.
,
2013
, “
Mechanical Behavior of Porous Polysiloxane With Micropores Interconnected by Microchannels
,”
Polym. Eng. Sci.
, (in press).10.1002/pen.23688
83.
Pego
,
A. P.
,
Poot
,
A. A.
,
Grijpma
,
D. W.
, and
Feijen
,
J.
,
2003
, “
Biodegradable Elastomeric Scaffolds for Soft Tissue Engineering
,”
J. Controlled Release
,
87
(
1-3
), pp.
69
79
.10.1016/S0168-3659(02)00351-6
84.
Wu
,
L. B.
, and
Ding
,
J. D.
,
2004
, “
In vitro Degradation of Three-Dimensional Porous Poly(D,L-Lactide-Co-Glycolide) Scaffolds for Tissue Engineering
,”
Biomaterials
,
25
(
27
), pp.
5821
5830
.10.1016/j.biomaterials.2004.01.038
85.
Malda
,
J.
,
Woodfield
,
T. B. F.
,
van der Vloodt
,
F.
,
Wilson
,
C.
,
Martens
,
D. E.
,
Tramper
,
J.
, van Blitterswijk, C. A., and
Riesle
,
J.
2005
, “
The Effect of PEGT/PBT Scaffold Architecture on the Composition of Tissue Engineered Cartilage
,”
Biomaterials
,
26
(
1
), pp.
63
72
.10.1016/j.biomaterials.2004.02.046
86.
Santerre
,
J. P.
,
Sharifpoor
,
S.
,
Simmons
,
C. A.
, and
Labow
,
R. S.
,
2010
, “
A Study of Vascular Smooth Muscle Cell Function Under Cyclic Mechanical Loading in a Polyurethane Scaffold With Optimized Porosity
,”
Acta Biomater.
,
6
(
11
), pp.
4218
4228
.10.1016/j.actbio.2010.06.018
87.
Shokrolahi
,
F.
,
Mirzadeh
,
H.
,
Yeganeh
,
H.
, and
Daliri
,
M.
,
2011
, “
Fabrication of Poly(Urethane Urea)-Based Scaffolds for Bone Tissue Engineering by a Combined Strategy of Using Compression Moulding and Particulate Leaching Methods
,”
Iranian Polym. J.
,
20
(
8
), pp.
645
658
.
88.
Pan
,
Z.
,
Qu
,
Z. H.
,
Zhang
,
Z.
,
Peng
,
R.
,
Yan
,
C.
, and
Ding
,
J. D.
,
2013
, “
Particle-Collision and Porogen-Leaching Technique to Fabricate Polymeric Porous Scaffolds With Microscale Roughness of Interior Surfaces
,”
Chin. J. Polym. Sci.
,
31
(
5
), pp.
737
747
.10.1007/s10118-013-1264-1
89.
Yao
,
D. G.
,
Zhang
,
W.
, and
Zhou
,
J. G.
,
2009
, “
Controllable Growth of Gradient Porous Structures
,”
Biomacromolecules
,
10
(
5
), pp.
1282
1286
.10.1021/bm900008d
90.
Miao
,
X. G.
, and
Sun
,
D.
,
2010
, “
Graded/Gradient Porous Biomaterials
,”
Materials
,
3
(
1
), pp.
26
47
.10.3390/ma3010026
91.
Werner
,
J.
,
Linner-Krcmar
,
B.
,
Friess
,
W.
, and
Greil
,
P.
,
2002
, “
Mechanical Properties and in vitro Cell Compatibility of Hydroxyapatite Ceramics With Graded Pore Structure
,”
Biomaterials
,
23
(
21
), pp.
4285
4294
.10.1016/S0142-9612(02)00191-6
92.
Wu
,
H.
,
Wan
,
Y.
,
Cao
,
X.
,
Dalai
,
S.
,
Wang
,
S.
, and
Zhang
,
S.
,
2008
, “
Fabrication of Chitosan-g-Polycaprolactone Copolymer Scaffolds With Gradient Porous Microstructures
,”
Mater. Lett.
,
62
(
17-18
), pp.
2733
2736
.10.1016/j.matlet.2008.01.029
93.
Gong
,
X. H.
,
Tang
,
C. Y.
,
Zhang
,
Y. G.
,
Wong
,
C. T.
,
Wu
,
S. P.
, and
Liu
,
J. N.
,
2012
, “
Fabrication of Graded Macroporous Poly(Lactic Acid) Scaffold by a Progressive Solvent Casting/Porogen Leaching Approach
,”
J. Appl. Polym. Sci.
,
125
(
1
), pp.
571
577
.10.1002/app.35690
94.
Iwata
,
M.
,
Shimono
,
A.
,
Kishiro
,
K.
, and
Kunieda
,
Y.
,
1998
, “
Preparation of Porous Hydroxyapatite Materials With a Continuous Porosity Profile by Use of a Filtration Method
,”
J. Jpn. Inst. Met.
,
62
(
11
), pp.
1088
1094
.
95.
Droschel
,
M.
,
Hoffmann
,
M. J.
,
Oberacker
,
R.
,
von Both
,
H.
,
Schaller
,
W.
,
Yang
,
Y. Y.
, and
Munz
,
D.
,
2000
, “
SiC-Ceramics With Tailored Porosity Gradients for Combustion Chambers
,”
Engineering Ceramics: Multifunctional Properties—New Perspectives
,
P.
Sajgalik
and
Z.
Lences
, eds.,
Trans Tech Publications, Ltd.
,
Zurich, Switzerland
, pp.
149
162
.
96.
Miao
,
X.
,
Hu
,
Y.
,
Liu
,
J.
,
Tio
,
B.
,
Cheang
,
P.
, and
Khor
,
K. A.
,
2003
, “
Highly Interconnected and Functionally Graded Porous Bioceramics
,”
Bioceramics 15
,
B.
BenNissan
,
D.
Sher
, and
W.
Walsh
, eds.,
Trans Tech Publications, Ltd.
,
Zurich, Switzerland
, pp.
595
598
.
97.
Roosa
,
S. M. M.
,
Kemppainen
,
J. M.
,
Moffitt
,
E. N.
,
Krebsbach
,
P. H.
, and
Hollister
,
S. J.
,
2010
, “
The Pore Size of Polycaprolactone Scaffolds has Limited Influence on Bone Regeneration in an in vivo Model
,”
J. Biomed. Mater. Res. Part A
,
92A
(
1
), pp.
359
368
.10.1002/jbm.a.32381
98.
Gong
,
Y. H.
,
Ma
,
Z. W.
,
Zhou
,
Q. L.
,
Li
,
J.
,
Gao
,
C. Y.
, and
Shen
,
J. C.
,
2008
, “
Poly(Lactic Acid) Scaffold Fabricated by Gelatin Particle Leaching has Good Biocompatibility for Chondrogenesis
,”
J. Biomater. Sci., Polym. Ed.
,
19
(
2
), pp.
207
221
.10.1163/156856208783432453
99.
Chen
,
G. P.
,
Ushida
,
T.
, and
Tateishi
,
T.
,
2001
, “
Preparation of Poly(L-Lactic Acid) and Poly(DL-Lactic-Co-Glycolic Acid) Foams by Use of Ice Microparticulates
,”
Biomaterials
,
22
(
18
), pp.
2563
2567
.10.1016/S0142-9612(00)00447-6
100.
Li
,
L. H.
,
Kommareddy
,
K. P.
,
Pilz
,
C.
,
Zhou
,
C. R.
,
Fratzl
,
P.
, and
Manjubala
,
I.
,
2010
, “
In vitro Bioactivity of Bioresorbable Porous Polymeric Scaffolds Incorporating Hydroxyapatite Microspheres
,”
Acta Biomater.
,
6
(
7
), pp.
2525
2531
.10.1016/j.actbio.2009.03.028
101.
Stares
,
S. L.
,
Fredel
,
M. C.
,
Aragones
,
A.
,
Gutmanas
,
E. Y.
,
Gotman
,
I.
,
Greil
,
P.
, and
Travitzky
,
N.
,
2013
, “
PLLA/HA Composite Laminates
,”
Adv. Eng. Mater.
,
15
(
11
), pp.
1122
1124
.10.1002/adem.201200395
102.
Tadmor
,
Z.
, and
Gogos
,
C. G.
,
2006
,
Principles of Polymer Processing
, Vol.
16
,
2nd ed.
,
Wiley-Interscience
,
Hoboken, NJ
.
103.
Kamal
,
M. R.
,
Isayev
,
A. I.
, and
Liu
,
S.-J.
,
2009
, Injection Molding: Technol-ogy and Fundamentals, Hanser, Munich.
104.
Boczkowska
,
A.
,
Chabera
,
P.
,
Dolata
,
A. J.
,
Dyzia
,
M.
, and
Ozieblo
,
A.
,
2013
, “
Porous Ceramic—Metal Composites Obtained by Infiltration Methods
,”
Metalurgija
,
52
(
3
), pp.
345
348
.
105.
Zhang
,
J.
,
Yan
,
D. X.
,
Lei
,
J.
,
Xu
,
J. Z.
,
Hsiao
,
B. S.
, and
Li
,
Z. M.
,
2013
, “
Ultraporous Poly(Lactic Acid) Scaffolds With Improved Mechanical Performance Using High-Pressure Molding and Salt Leaching
,”
J. Appl. Polym. Sci.
,
130
(
5
), pp.
3509
3520
.10.1002/app.39570
106.
Virgilio
,
N.
,
Sarazin
,
P.
, and
Favis
,
B. D.
,
2010
, “
Towards Ultraporous Poly(L-Lactide) Scaffolds From Quaternary Immiscible Polymer Blends
,”
Biomaterials
,
31
(
22
), pp.
5719
5728
.10.1016/j.biomaterials.2010.03.071
107.
Stevens
,
B.
,
Yang
,
Y. Z.
,
Mohandas
,
A.
,
Stucker
,
B.
, and
Nguyen
,
K. T.
,
2008
, “
A Review of Materials, Fabrication to Enhance Bone Regeneration in Methods, and Strategies Used Engineered Bone Tissues
,”
J. Biomed. Mater. Res. Part B
,
85B
(
2
), pp.
573
582
.10.1002/jbm.b.30962
108.
Jongpaiboonkit
,
L.
,
Lin
,
C. Y.
,
Krebsbach
,
P. H.
,
Hollister
,
S. J.
, and
Halloran
,
J. W.
,
2006
, “
Mechanical Behavior of Complex 3D Calcium Phosphate Cement Scaffolds Fabricated by Indirect Solid Freeform Fabrication in vivo
,”
Bioceramics 18
, Parts 1 and 2,
T.
Nakamura
,
K.
Yamashita
, and
M.
Neo
, eds.,
Trans Tech Publications, Ltd.
,
Zurich, Switzerland
, pp.
957
960
.
109.
Li
,
X.
,
Bian
,
W.
,
Li
,
D.
,
Lian
,
Q.
, and
Jin
,
Z.
,
2011
, “
Fabrication of Porous Beta-Tricalcium Phosphate With Microchannel and Customized Geometry Based on Gel-Casting and Rapid Prototyping
,”
Proc. Inst. Mech. Eng. Part H
,
225
(
H3
), pp.
315
323
.
110.
Lin
,
L. L.
,
Zhang
,
H. C.
,
Zhao
,
L.
,
Hu
,
Q. X.
, and
Fang
,
M. L.
,
2009
, “
Design and Preparation of Bone Tissue Engineering Scaffolds With Porous Controllable Structure
,”
J. Wuhan Univ. Technol., Mater. Sci. Ed.
,
24
(
2
), pp.
174
180
.10.1007/s11595-009-2174-5
111.
Sharma
,
B.
, and
Elisseeff
,
J. H.
,
2004
, “
Engineering Structurally Organized Cartilage and Bone Tissues
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
148
159
.10.1023/B:ABME.0000007799.60142.78
112.
Kuo
,
Y. C.
, and
Leou
,
S. N.
,
2006
, “
Effects of Composition, Solvent, and Salt Particles on the Physicochemical Properties of Polyglycolide/Poly(Lactide-Co-Glycolide) Scaffolds
,”
Biotechnol. Prog.
,
22
(
6
), pp.
1664
1670
.10.1002/bp0602303
113.
Izal
,
I.
,
Aranda
,
P.
,
Sanz-Ramos
,
P.
,
Ripalda
,
P.
,
Mora
,
G.
,
Granero-Molto
,
F.
,
Deplaine
,
H.
,
Gomez-Ribelles
,
J. L.
,
Ferrer
,
G. G.
,
Acosta
,
V.
,
Ochoa
,
I.
,
Garcia-Aznar
,
J. M.
,
Andreu
,
E. J.
,
Monleon-Pradas
,
M.
,
Doblare
,
M.
, and
Prosper
,
F.
,
2013
, “
Culture of Human Bone Marrow-Derived Mesenchymal Stem Cells on of Poly(L-Lactic Acid) Scaffolds, Potential Application for the Tissue Engineering of Cartilage
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
21
(
8
), pp.
1737
1750
.10.1007/s00167-012-2148-6
114.
Akhyari
,
P.
,
Kamiya
,
H.
,
Haverich
,
A.
,
Karck
,
M.
, and
Lichtenberg
,
A.
,
2008
, “
Myocardial Tissue Engineering: The Extracellular Matrix
,”
Eur. J. Cardio-Thorac. Surg.
,
34
(
2
), pp.
229
241
.10.1016/j.ejcts.2008.03.062
115.
Teebken
,
O. E.
, and
Haverich
,
A.
,
2002
, “
Tissue Engineering of Small Diameter Vascular Grafts
,”
Eur. J. Vasc. Endovasc. Surg.
,
23
(
6
), pp.
475
485
.10.1053/ejvs.2002.1654
116.
Johnson
,
T.
,
Bahrampourian
,
R.
,
Patel
,
A.
, and
Mequanint
,
K.
,
2010
, “
Fabrication of Highly Porous Tissue-Engineering Scaffolds Using Selective Spherical Porogens
,”
Biomed. Mater. Eng.
,
20
(
2
), pp.
107
118
.10.3233/BME-2010-0621
117.
Crapo
,
P. M.
, and
Wang
,
Y.
,
2010
, “
Physiologic Compliance in Engineered Small-Diameter Arterial Constructs Based on an Elastomeric Substrate
,”
Biomaterials
,
31
(
7
), pp.
1626
1635
.10.1016/j.biomaterials.2009.11.035
118.
Ameer
,
G. A.
,
Yang
,
J.
,
Motlagh
,
D.
, and
Webb
,
A. R.
,
2005
, “
Novel Biphasic Elastomeric Scaffold for Small-Diameter Blood Vessel Tissue Engineering
,”
Tissue Eng.
,
11
(
11-12
), pp.
1876
1886
.10.1089/ten.2005.11.1876
119.
Santerre
,
J. P.
,
Sharifpoor
,
S.
, and
Labow
,
R. S.
,
2009
, “
Synthesis and Characterization of Degradable Polar Hydrophobic Ionic Polyurethane Scaffolds for Vascular Tissue Engineering Applications
,”
Biomacromolecules
,
10
(
10
), pp.
2729
2739
.10.1021/bm9004194
120.
Santerre
,
J. P.
,
Sharifpoor
,
S.
,
Simmons
,
C. A.
, and
Labow
,
R. S.
,
2011
, “
Functional Characterization of Human Coronary Artery Smooth Muscle Cells Under Cyclic Mechanical Strain in a Degradable Polyurethane Scaffold
,”
Biomaterials
,
32
(
21
), pp.
4816
4829
.10.1016/j.biomaterials.2011.03.034
121.
Lee
,
K. W.
, and
Wang
,
Y.
,
2011
, “
Elastomeric PGS Scaffolds in Arterial Tissue Engineering
,”
J. Vis. Exp.
,
50
,
p
. 2691.10.3791/2691
122.
Jiang
,
B.
,
Waller
,
T. M.
,
Larson
,
J. C.
,
Appel
,
A. A.
, and
Brey
,
E. M.
,
2013
, “
Fibrin-Loaded Porous Poly(Ethylene Glycol) Hydrogels as Scaffold Materials for Vascularized Tissue Formation
,”
Tissue Eng. Part A
,
19
(
1-2
), pp.
224
234
.10.1089/ten.tea.2012.0120
123.
Kim
,
S. H.
,
Mun
,
C. H.
,
Jung
,
Y.
,
Kim
,
S. H.
,
Kim
,
D. I.
, and
Kim
,
S. H.
,
2013
, “
Mechanical Properties of Compliant Double Layered Poly(L-Lactide-Co-Epsilon-Caprolactone) Vascular Graft
,”
Macromol. Res.
,
21
(
8
), pp.
886
891
.10.1007/s13233-013-1095-5
124.
Nerem
,
R. M.
, and
Ensley
,
A. E.
,
2004
, “
The Tissue Engineering of Blood Vessels and the Heart
,”
Am. J. Transplant.
,
4
, pp.
36
42
.10.1111/j.1600-6135.2004.0343.x
125.
Wagner
,
W. R.
,
Fujimoto
,
K. L.
,
Guan
,
J. J.
,
Oshima
,
H.
, and
Sakai
,
T.
,
2007
, “
In vivo Evaluation of a Porous, Elastic, Biodegradable Patch for Reconstructive Cardiac Procedures
,”
Ann. Thorac. Surg.
,
83
(
2
), pp.
648
654
.10.1016/j.athoracsur.2006.06.085
126.
Shakesheff
,
K. M.
,
Hidalgo-Bastida
,
L. A.
,
Barry
,
J. J. A.
,
Everitt
,
N. M.
,
Rose
,
F. R. A. J.
,
Buttery
,
L. D.
,
Hall
,
I. P.
, and
Claycomb
,
W. C.
,
2007
, “
Cell Adhesion and Mechanical Properties of a Flexible Scaffold for Cardiac Tissue Engineering
,”
Acta Biomater.
,
3
(
4
), pp.
457
462
.10.1016/j.actbio.2006.12.006
127.
Radisic
,
M.
,
Park
,
H.
,
Chen
,
F.
,
Salazar-Lazzaro
,
J. E.
,
Wang
,
Y.
,
Dennis
,
R.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2006
, “
Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds
,”
Tissue Eng.
,
12
(
8
), pp.
2077
2091
.10.1089/ten.2006.12.2077
128.
Radisic
,
M.
,
Park
,
H.
,
Martens
,
T. P.
,
Salazar-Lazaro
,
J. E.
,
Geng
,
W.
,
Wang
,
Y.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
,
2007
, “
Pre-Treatment of Synthetic Elastomeric Scaffolds by Cardiac Fibroblasts Improves Engineered Heart Tissue
,”
J. Biomed. Mater. Res. Part A
,
86A
(
3
), pp.
713
724
.10.1002/jbm.a.31578
129.
Vunjak-Novakovic
,
G.
,
Marsano
,
A.
,
Maidhof
,
R.
,
Wan
,
L. Q.
,
Wang
,
Y. D.
,
Gao
,
J.
, and
Tandon
,
N.
,
2010
, “
Scaffold Stiffness Affects the Contractile Function of Three-Dimensional Engineered Cardiac Constructs
,”
Biotechnol. Prog.
,
26
(
5
), pp.
1382
1390
.10.1002/btpr.435
130.
Guarino
,
V.
,
Gloria
,
A.
,
Alvarez-Perez
,
M.
,
Raucci
,
M. G.
,
Cirillo
,
V.
,
Ronca
,
A.
,
De Santis
,
R.
, and
Ambrosio
,
L.
,
2011
,
Design of Functional Polymer and Composite Scaffolds for the Regeneration of Bone, Menisci, Osteochondral and Peripheral Nervous Tissues
,”
Advances in Innovative Materials and Applications
,
M.
Soueidan
,
M.
Roumie
, and
P.
Masri
, eds.,
Trans Tech Publications, Ltd.
,
Zurich, Switzerland
, pp.
8
13
.
131.
Studenovska
,
H.
,
Slouf
,
M.
, and
Rypacek
,
F.
,
2008
, “
Poly(HEMA) Hydrogels With Controlled Pore Architecture for Tissue Regeneration Applications
,”
J. Mater. Sci.: Mater. Med.
,
19
(
2
), pp.
615
621
.10.1007/s10856-007-3217-0
132.
Guo
,
B.
,
Sun
,
Y.
,
Finne-Wistrand
,
A.
,
Mustafa
,
K.
, and
Albertsson
,
A.-C.
,
2012
, “
Electroactive Porous Tubular Scaffolds With Degradability and Non-Cytotoxicity for Neural Tissue Regeneration
,”
Acta Biomater.
,
8
(
1
), pp.
144
153
.10.1016/j.actbio.2011.09.027
133.
Kokai
,
L. E.
,
Lin
,
Y.-C.
,
Oyster
,
N. M.
, and
Marra
,
K. G.
,
2009
, “
Diffusion of Soluble Factors Through Degradable Polymer Nerve Guides: Controlling Manufacturing Parameters
,”
Acta Biomater.
,
5
(
7
), pp.
2540
2550
.10.1016/j.actbio.2009.03.009
134.
Wong
,
D. Y.
,
Leveque
,
J.-C.
,
Brumblay
,
H.
,
Krebsbach
,
P. H.
,
Hollister
,
S. J.
, and
LaMarca
,
F.
,
2008
, “
Macro-Architectures in Spinal Cord Scaffold Implants Influence Regeneration
,”
J. Neurotrauma
,
25
(
8
), pp.
1027
1037
.10.1089/neu.2007.0473
135.
Moisenovich
,
M. M.
,
Pustovalova
,
O. L.
,
Arhipova
,
A. Y.
,
Vasiljeva
,
T. V.
,
Sokolova
,
O. S.
,
Bogush
,
V. G.
,
Debabov
,
V. G.
,
Sevastianov
,
V. I.
,
Kirpichnikov
,
M. P.
, and
Agapov
,
I. I.
,
2011
, “
In vitro and in vivo Biocompatibility Studies of a Recombinant Analogue of Spidroin 1 Scaffolds
,”
J. Biomed. Mater. Res. Part A
,
96A
(
1
), pp.
125
131
.10.1002/jbm.a.32968
136.
Hu
,
Y. Q.
, and
Zhu
,
K. J.
,
2004
, “
Synthesis, Characterization and Degradation of Poly(2,2-Dimethyl Trimethylene Carbonate-Co-Epsilon-Caprolactone-Co-Glycolide)
,”
Polym. Degrad. Stab.
,
85
(
1
), pp.
705
712
.10.1016/j.polymdegradstab.2003.12.010
137.
Ohashi
,
K.
,
2008
, “
Liver Tissue Engineering: The Future of Liver Therapeutics
,”
Hepatol. Res.
,
38
, pp.
S76
S87
.10.1111/j.1872-034X.2008.00431.x
138.
He
,
J. K.
,
Li
,
D. C.
,
Liu
,
Y. X.
,
Yao
,
B.
,
Lu
,
B. H.
, and
Lian
,
Q.
,
2007
, “
Fabrication and Characterization of Chitosan/Gelatin Porous Scaffolds With Predefined Internal Microstructures
,”
Polymer
,
48
(
15
), pp.
4578
4588
.10.1016/j.polymer.2007.04.016
139.
Kataoka
,
K.
,
Nagao
,
Y.
,
Nukui
,
T.
,
Akiyama
,
I.
,
Tsuru
,
K.
,
Hayakawa
,
S.
,
Osaka
,
A.
, and
Huh
,
N.
,
2005
, “
An Organic-Inorganic Hybrid Scaffold for the Culture of HepG2 Cells in a Bioreactor
,”
Biomaterials
,
26
(
15
), pp.
2509
2516
.10.1016/j.biomaterials.2004.07.012
140.
Javaid Ur
,
R.
, and
Waseem
,
T.
,
2008
, “
Intestinal Tissue Engineering: Where do We Stand?
,”
Surg. Today
,
38
(
6
), pp.
484
486
.10.1007/s00595-007-3671-9
141.
Widmer
,
M. S.
,
Gupta
,
P. K.
,
Lu
,
L. C.
,
Meszlenyi
,
R. K.
,
Evans
,
G. R. D.
,
Brandt
,
K.
,
Savel
,
T.
,
Gurlek
,
A.
,
Patrick
,
C. W.
, and
Mikos
,
A. G.
,
1998
, “
Manufacture of Porous Biodegradable Polymer Conduits by an Extrusion Process for Guided Tissue Regeneration
,”
Biomaterials
,
19
(
21
), pp.
1945
1955
.10.1016/S0142-9612(98)00099-4
142.
Gupta
,
A.
,
Vara
,
D. S.
,
Punshon
,
G.
,
Sales
,
K. M.
,
Winslet
,
M. C.
, and
Seifalian
,
A. M.
,
2009
, “
In vitro Small Intestinal Epithelial Cell Growth on a Nanocomposite Polycaprolactone Scaffold
,”
Biotechnol. Appl. Biochem.
,
54
, pp.
221
229
.10.1042/BA20090214
143.
Horch
,
R. E.
,
Kopp
,
J.
,
Kneser
,
U.
,
Beier
,
J.
, and
Bach
,
A. D.
,
2005
, “
Tissue Engineering of Cultured Skin Substitutes
,”
J. Cell. Mol. Med.
,
9
(
3
), pp.
592
608
.10.1111/j.1582-4934.2005.tb00491.x
144.
Ahn
,
S.
,
Lee
,
S.
,
Cho
,
Y.
,
Chun
,
W.
, and
Kim
,
G.
,
2011
, “
Fabrication of Three-Dimensional Collagen Scaffold Using an Inverse Mould-Leaching Process
,”
Bioprocess Biosyst. Eng.
,
34
(
7
), pp.
903
911
.10.1007/s00449-011-0541-z
145.
Lee
,
S. B.
, Kim, Y. H., Chong, M. S., Hong, S. H., and Lee, Y. M.,
2005
, “
Study of Gelatin-Containing Artificial Skin V: Fabrication of Gelatin Scaffolds Using a Salt-Leaching Method
,”
Biomaterials
,
26
(
14
), pp.
1961
1968
.10.1016/j.biomaterials.2004.06.032
146.
Benatti
,
B. B.
,
Silverio
,
K. G.
,
Casati
,
M. Z.
,
Sallum
,
E. A.
, and
Nociti
,
F. H.
,
2007
, “
Physiological Features of Periodontal Regeneration and Approaches for Periodontal Tissue Engineering Utilizing Periodontal Ligament Cells
,”
J. Biosci. Bioeng.
,
103
(
1
), pp.
1
6
.10.1263/jbb.103.1
147.
Schander
,
K.
,
Arvidson
,
K.
,
Mustafa
,
K.
,
Hellem
,
E.
,
Bolstad
,
A. I.
,
Finne-Wistrand
,
A.
, and
Albertsson
,
A. C.
,
2010
, “
Response of Bone and Periodontal Ligament Cells to Biodegradable Polymer Scaffolds in vitro
,”
J. Bioact. Compat. Polym.
,
25
(
6
), pp.
584
602
.10.1177/0883911510383684
148.
Xu
,
Y. Z.
,
Wu
,
J. J.
,
Chen
,
Y. P.
,
Liu
,
J. A.
,
Li
,
N.
, and
Yang
,
F. Y.
,
2010
, “
The Use of Zein and Shuanghuangbu for Periodontal Tissue Engineering
,”
Int. J. Oral Sci.
,
2
(
3
), pp.
142
148
.10.4248/IJOS10056
149.
Garg
,
T.
,
Singh
,
O.
,
Arora
,
S.
, and
Murthy
,
R. S. R.
,
2012
, “
Scaffold: A Novel Carrier for Cell and Drug Delivery
,”
Crit. Rev. Ther. Drug Carrier Syst.
,
29
(
1
), pp.
1
63
.10.1615/CritRevTherDrugCarrierSyst.v29.i1.10
150.
Yoon
,
J. J.
,
Kim
,
J. H.
, and
Park
,
T. G.
,
2003
, “
Dexamethasone-Releasing Biodegradable Polymer Scaffolds Fabricated by a Gas-Foaming/Salt-Leaching Method
,”
Biomaterials
,
24
(
13
), pp.
2323
2329
.10.1016/S0142-9612(03)00024-3
151.
El-Ayoubi
,
R.
,
Eliopoulos
,
N.
,
Diraddo
,
R.
,
Jacques
,
G.
, and
Yousef
,
A. M.
,
2008
, “
Design and Fabrication of 3D Porous Scaffolds to Facilitate Cell-Based Gene Therapy
,”
Tissue Eng. Part A
,
14
(
6
), pp.
1037
1048
.10.1089/ten.tea.2006.0418
152.
Kloke
,
A.
,
von Stetten
,
F.
,
Zengerle
,
R.
, and
Kerzenmacher
,
S.
,
2011
, “
Strategies for the Fabrication of Porous Platinum Electrodes
,”
Adv. Mater.
,
23
(
43
), pp.
4976
5008
.10.1002/adma.201102182
153.
Taillades
,
G.
,
Batocchi
,
P.
,
Essoumhi
,
A.
,
Taillades
,
M.
,
Jones
,
D. J.
, and
Roziere
,
J.
,
2011
, “
Engineering of Porosity, Microstructure and Electrical Properties of Ni-BaCe0.9Y0.1O2.95 Cermet Fuel Cell Electrodes by Gelled Starch Porogen Processing
,”
Microporous Mesoporous Mater.
,
145
(
1-3
), pp.
26
31
.10.1016/j.micromeso.2011.04.020
154.
Luckarift
,
H. R.
,
Sizemore
,
S. R.
,
Farrington
,
K. E.
,
Roy
,
J.
,
Lau
,
C.
,
Atanassov
,
P. B.
, and
Johnson
,
G. R.
,
2012
, “
Facile Fabrication of Scalable, Hierarchically Structured Polymer/Carbon Architectures for Bioelectrodes
,”
ACS Appl. Mater. Interfaces
,
4
(
4
), pp.
2082
2087
.10.1021/am300048v
155.
Simms
,
H. A.
,
Bowman
,
C. A.
, and
Anseth
,
K. S.
,
2008
, “
Using Living Radical Polymerization to Enable Facile Incorporation of Materials in Microfluidic Cell Culture Devices
,”
Biomaterials
,
29
(
14
), pp.
2228
2236
.10.1016/j.biomaterials.2008.02.001
156.
Perez
,
N.
,
Tavera
,
T.
,
Rodriguez
,
A.
,
Ellman
,
M.
,
Ayerdi
,
I.
, and
Olaizola
,
S. M.
,
2012
, “
Fabrication of Sub-Micrometric Metallic Hollow-Core Structures by Laser Interference Lithography
,”
Appl. Surf. Sci.
,
258
(
23
), pp.
9370
9373
.10.1016/j.apsusc.2012.03.185
157.
Wolf
,
A. J.
,
Hauser
,
H.
,
Kubler
,
V.
,
Walk
,
C.
,
Hohn
,
O.
, and
Blasi
,
B.
,
2012
, “
Origination of Nano- and Microstructures on Large Areas by Interference Lithography
,”
Microelectron. Eng.
,
98
, pp.
293
296
.10.1016/j.mee.2012.05.018
158.
Ahn
,
H. J.
,
Thiyagarajan
,
P.
,
Jia
,
L.
,
Kim
,
S. I.
,
Yoon
,
J. C.
,
Thomas
,
E. L.
, and
Jang
,
J. H.
,
2013
, “
An Optimal Substrate Design for SERS: Dual-Scale Diamond-Shaped Gold Nano-Structures Fabricated via Interference Lithography
,”
Nanoscale
,
5
(
5
), pp.
1836
1842
.10.1039/c3nr33498h
You do not currently have access to this content.