Vortex spinning is a novel technology which produces short-staple yarns by utilizing high-speed swirling airflow. The structure of the spindle plays an important role in vortex spinning in terms of its effect on the resulting yarn properties. In this paper, a two-dimensional fluid-structure interaction (FSI) model for the fiber/air two-phase flow is presented to design the two spindle parameters—the spindle cone angle and spindle diameter by evaluating their effects on the fiber dynamics in the flow field inside the twisting system and the resulting yarn tenacity. The coupling between the fiber and airflow is solved and the motional characteristics of the fiber are obtained. It is found that the fiber moves downstream in a varying wavy shape and its spreaded trailing portion is then in a helical motion to form the yarn. The results also show that the increase of the spindle cone angle has a negative effect on the tenacity of the produced vortex yarn. The increased spindle diameter gives rise to the decreased vortex yarn tenacity. The numerical results can provide an explanation for the experimental results reported by previous studies.

References

References
1.
Morimoto
,
K.
,
Tada
,
Y.
,
Takashima
,
H.
,
Minamino
,
K.
,
Tahara
,
R.
, and
Konishi
,
S.
,
2010
, “
Micro Spinning Nozzle Having 3D Profile for Fiber Generation With Spiral Air Flow
,”
Proceedings of the 23rd International Conference on IEEE Micro Electro Mechanical Systems (MEMS' 10)
, Hong Kong, pp.
244
247
.
2.
Küppers
,
S.
,
Müller
,
H.
,
Ziegler
,
K.
,
Heitmann
,
U.
, and
Planck
,
H.
,
2008
, “
Spinning Limits at Vortex Spinning at the Processing of 100% Cotton
,”
Melliand Engl.
,
7–8
, pp.
71
72
.
3.
Deno
,
K.
,
1996
, “Spinning Apparatus With Twisting Guide Surfaces,” U.S. Patent No. 5,528,895.
4.
Basal
,
G.
, and
Oxenham
,
W.
,
2006
, “
Effects of Some Process Parameters on the Structure and Properties of Vortex Spun Yarn
,”
Text. Res. J.
,
76
(
6
), pp.
492
499
.10.1177/0040517506064253
5.
Ortlek
,
H. G.
,
2006
, “
Influence of Selected Process Variables on the Mechanical Properties of Core-Spun Vortex Yarns Containing Elastane
,”
Fibres Text. East. Eur.
,
14
(
3
), pp.
42
44
.
6.
Ortlek
,
H. G.
,
Nair
,
F.
,
Kilik
,
R.
, and
Guven
,
K.
,
2008
, “
Effect of Spindle Diameter and Spindle Working Period on the Properties of 100% Viscose MVS Yarns
,”
Fibres Text. East. Eur.
,
16
(
3
), pp.
17
20
.
7.
Guo
,
H.
,
An
,
X.
,
Yu
,
Z.
, and
Yu
,
C.
,
2008
, “
A Numerical and Experimental Study on the Effect of the Cone Angle of the Spindle in Murata Vortex Spinning
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031106
.10.1115/1.2844582
8.
Pei
,
Z.
, and
Yu
,
C.
,
2011
, “
Prediction of the Vortex Yarn Tenacity From Some Process and Nozzle Parameters Based on Numerical Simulation and Artificial Neural Network
,”
Text. Res. J.
,
81
(
17
), pp.
1796
1807
.10.1177/0040517511411970
9.
Stalder
,
H.
, and
Anderegg
,
P.
,
2006
, “
Device for Producing a Spun Yarn
,” U.S. Patent No. 7,043,893 B2.
10.
Zou
,
Z. Y.
,
Liu
,
S. R.
,
Zheng
,
S. M.
, and
Cheng
,
L. D.
,
2010
, “
Numerical Computation of a Flow Field Affected by the Process Parameters of Murata Vortex Spinning
,”
Fibres Text. East. Eur.
,
18
(
2
), pp.
35
39
.
11.
Zou
,
Z. Y.
,
Cheng
,
L. D.
,
Xue
,
W. L.
, and
Yu
,
J. Y.
,
2008
, “
A Study of the Twisted Strength of the Whirled Airflow in Murata Vortex Spinning
,”
Text. Res. J.
,
78
(
8
), pp.
682
687
.10.1177/0040517508089753
12.
Pei
,
Z.
, and
Yu
,
C.
,
2009
, “
Study on the Principle of Yarn Formation of Murata Vortex Spinning Using Numerical Simulation
,”
Text. Res. J.
,
79
(
14
), pp.
1274
1280
.10.1177/0040517509102227
13.
Tam
,
D.
,
Radovitzky
,
R.
, and
Samtaney
,
R.
,
2005
, “
An Algorithm for Modelling the Interaction of a Flexible Rod With a Two-Dimensional High-Speed Flow
,”
Int. J. Numer. Methods Eng.
,
64
(
8
), pp.
1057
1077
.10.1002/nme.1397
14.
Simoneau
,
J.
,
Sageaux
,
T.
,
Moussallam
,
N.
, and
Bernard
,
O.
,
2011
, “
Fluid Structure Interaction Between Rods and a Cross Flow—Numerical Approach
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4515
4522
.10.1016/j.nucengdes.2011.02.035
15.
Oh
,
H. J.
,
Song
,
Y. S.
,
Kim
,
S. H.
,
Kim
,
S. Y.
, and
Youn
,
J. R.
,
2011
, “
Fluid–Structure Interaction Analysis on the Film Wrinkling Problem of a Film Insert Molded Part
,”
Polym. Eng. Sci.
,
51
(
4
), pp.
812
818
.10.1002/pen.21886
16.
Zeng
,
Y. C.
, and
Yu
,
C. W.
,
2004
, “
Numerical Simulation of Fiber Motion in the Nozzle of an Air-Jet Spinning Machine
,”
Text. Res. J.
,
74
(
2
), pp.
117
122
.10.1177/004051750407400206
17.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1974
, “
An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
18.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London
.
19.
Sadykava
,
F. K.
,
1972
, “
The Poisson's Ratio of Textile Fibres and Yarns
,”
Fibre. Chem.
,
3
(
2
), pp.
180
183
.10.1007/BF00547341
20.
Pantuso
,
D.
,
Bathe
,
K. J.
, and
Bouzinov
,
P. A.
,
2000
, “
A Finite Element Procedure for the Analysis of Thermo-Mechanical Solids in Contact
,”
Comput. Struct.
,
75
(
6
), pp.
551
573
.10.1016/S0045-7949(99)00212-6
21.
Basal
,
G.
, and
Oxenham
,
W.
,
2003
, “
Vortex Spun Yarn vs. Air-Jet Spun Yarn
,”
AUTEX. Res. J.
,
3
(
3
), pp.
96
101
.
22.
Yu
,
Z. S.
,
2007
, “
Research on the Vortex Spinning Method
,” M.E. thesis,
Donghua University
, Shanghai,
China
.
23.
Diao
,
C. Y.
,
2010
, “
Optimization of the Vortex Spinning Nozzle Parameters and Research on the Knitted Fabrics
,” M.E. thesis,
Donghua University
,
Shanghai, China
.
You do not currently have access to this content.