For successful commercial adaptation of the μ-EDM (micro electro-discharge machining) process, there is a need to increase the process efficiency by understanding the process mechanism. This paper presents a model of the plasma discharge phase of a single discharge μ-EDM event in deionized water. The plasma discharge is modeled using global model approach in which the plasma is assumed to be spatially uniform, and equations of mass and energy conservation are solved simultaneously along with the dynamics of the plasma bubble growth. Given the input discharge voltage, current and the discharge gap, complete temporal description of the μ-EDM plasma during the discharge time is obtained in terms of the composition of the plasma, temperature of electrons and other species, radius of the plasma bubble and the plasma pressure. For input electric field in the range of 10–2000 MV/m and discharge gap in the range of 0.5–20 μm, time-averaged electron density of 3.88×1024m-3-30.33×1024m-3 and time-averaged electron temperature of 11,013–29,864 K are predicted. Experimental conditions are simulated and validated against the spectroscopic data from the literature. The output from this model can be used to obtain the amount of heat flux transferred to the electrodes during the μ-EDM process.

References

References
1.
Dhanik
,
S.
, and
Joshi
,
S. S.
,
2005
, “
Modeling of a Single Resistance Capacitance Pulse Discharge in Micro-Electro Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
759
767
.10.1115/1.2034512
2.
Heuvelman
,
H. J.
,
Horsten
,
J. A.
, and
Veenstra
,
P. C.
,
1971
, “
An Introductory Investigation of Breakdown Mechanism in Electro-Discharge Machining
,”
CIRP Ann.
,
20
(
1
), pp.
43
44
.
3.
Jones
,
H. M.
, and
Kunhardt
,
E. E.
,
1995
, “
Development of Pulsed Dielectric Breakdown in Liquids
,”
J. Phys. D: Appl. Phys.
,
28
, pp.
178
188
.10.1088/0022-3727/28/1/025
4.
Eckman
,
P. K.
, and
Williams
,
E. M.
,
1960
, “
Plasma Dynamics in an Arc Formed by Low-Voltage Sparkover of a Liquid Dielectric
,”
Appl. Sci. Res., Sec. B
,
8
(
1
), pp.
299
320
.10.1007/BF02920065
5.
Eubank
,
P. T.
,
Patel
,
M. R.
,
Barrufet
,
M. A.
, and
Bozkurt
,
B.
,
1993
, “
Theoretical Models of the Electrica Discharge Machining the Variable Mass, Cylindrical Plasma Model
,”
J. Appl. Phys.
,
73
(
11
), pp.
7900
7909
.10.1063/1.353942
6.
Descoeudres
,
A.
,
Hollenstein
,
C.
,
Wälder
,
G.
,
Demellayer
,
R.
, and
Perez
,
R.
,
2008
, “
Time- and Spatially-Resolved Characterization of Electrical Discharge Machining Plasma
,”
Plasma Sources Sci. Technol.
,
17
(
2
), p.
024008
.10.1088/0963-0252/17/2/024008
7.
Kojima
,
A.
,
Natsu
,
W.
, and
Kunieda
,
M.
,
2008
, “
Spectroscopic Measurement of Arc Plasma Diameter in EDM
,”
CIRP Ann. – Manuf. Technol.
,
57
(
1
), pp.
203
207
.10.1016/j.cirp.2008.03.097
8.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K.
, and
Schumacher
,
B.
,
2005
, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Ann. – Manuf. Technol.
,
54
(
2
), pp.
64
87
.10.1016/S0007-8506(07)60020-1
9.
Lieberman
,
M. A.
, and
Lichtenberg
,
A. J.
,
2005
,
Principles of Plasma Discharges and Material Processing
,
Wiley
,
New York
.
10.
Ashida
,
S. C. L.
, and
A. L. M.
,
1995
, “
Spatially Averaged (Global) Model of Time Modulated High Density Argon Plasmas
,”
J. Vac. Sci. Technol. A
,
13
(
5
), pp.
2498
2507
.10.1116/1.579494
11.
Meyyappan
,
R.
, and
Govindan
,
T. R.
,
1995
, “
Modeling of Electron Cyclotron Resonance Discharges
,”
IEEE Trans. Plasma Sci.
,
23
(
4
), pp.
623
627
.10.1109/27.467983
12.
Hockenberry
,
T. O.
, and
Everard
,
W. M.
,
1967
, “
Dynamic Evolution of Events Accompanying the Low-Voltage Discharges Employed in EDM
,”
IEEE Trans. Ind. General Appl.
,
I
, pp.
302
309
.10.1109/TIGA.1967.4180787
13.
Watson
,
P. K.
,
Chadband
,
W. G.
, and
Mak
,
W. Y.
,
1985
, “
Bubble Growth Following a Localized Electrical Discharge Triggred Spark Gaps in Liquids
,”
IEEE Trans. Electric. Insulation
,
EI-20
(
2
), pp.
275
280
.10.1109/TEI.1985.348831
14.
Lieberman
,
M. A.
, and
Ashida
,
S.
,
1996
, “
Global Models of Pulse-Power-Modulated High-Density, Low-Pressure Discharges
,”
Plasma Sources Sci. Technol.
,
5
, pp.
145
158
.10.1088/0963-0252/5/2/006
15.
Lee
,
C.
, and
Lieberman
,
M. A.
,
1995
, “
Global Model of Ar, O2, Cl2, and Ar/O2 High-Density Plasma Discharges
,”
J. Vac. Sci. Technol. A
,
13
(
2
), pp.
368
380
.10.1116/1.579366
16.
Liu
,
D. X.
,
Bruggeman
,
P.
,
Iza
,
F.
,
Rong
,
M. Z.
, and
Kong
,
M. G.
,
2010
, “
Global Model of Low-Temperature Atmospheric-Pressure He + H2O Plasmas
,”
Plasma Sources Sci. Technol.
,
19
(
2
), p.
025018
.10.1088/0963-0252/19/2/025018
17.
Itikawa
,
Y.
, and
Mason
,
N.
,
2005
, “
Cross Sections for Electron Collisions With Water Molecules
,”
J. Phys. Chem. Ref. Data
,
34
(
1
), p.
1
.10.1063/1.1799251
18.
Gordon
,
D. F.
,
Helle
,
M. H.
, and
Jones
,
T. G.
,
2012
,
CHMWTR: A Plasma Chemistry Code for Water Vapor
,
Plasma Physics Division, Naval Research Laboratory
,
Washington, DC
.
19.
Huba
,
J. D.
,
2011
,
NRL Plasma Formulary
,
Naval Research Laboratory
,
Washington, DC
.
20.
Nagaraja
,
S.
,
Yang
,
V.
, and
Adamovich
,
I.
,
2013
, “
Multi-Scale Modelling of Pulsed Nanosecond Dielectric Barrier Plasma Discharges in Plane-to-Plane Geometry
,”
J. Phys. D: Appl. Phys.
,
46
(
15
), p.
155205
.10.1088/0022-3727/46/15/155205
21.
Roberts
,
R. M.
,
Cook
,
J. A.
, and
Rogers
,
R. L.
,
1996
, “
The Energy Partition of Underwater Sparks
,”
J. Acoust. Soc. Am.
,
99
(
6
), pp.
3465
3475
.10.1121/1.414993
22.
Cook
,
J. A.
,
Gleeson
,
A. M.
,
Roberts
,
R. M.
, and
Rogers
,
R. L.
,
1997
, “
A Spark-Generated Bubble Model With Semi-Empirical Mass Transport
,”
J. Acoust. Soc. Am.
,
101
(
4
), pp.
1908
1920
.10.1121/1.418236
23.
Conductivity Guide
, http://www.vl-pc.com/index.cfm/technical-info/conductivity-guide/, last accessed Dec 1, 2013
24.
Water Thermal Properties
, http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html, last accessed Dec 1, 2013
25.
Nagahanumaiah
,
Janakarajan
,
R.
,
Glumac
,
N.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2009
, “
Characterization of Plasma in Micro-EDM Discharge Using Optical Spectroscopy
,”
J. Manuf. Process.
,
11
(
2
), pp.
82
87
.10.1016/j.jmapro.2009.10.002
26.
Lu
,
X.
,
Kolb
,
J. F.
,
Xiao
,
S.
,
Laroussi
,
M.
, and
Schoenbach
,
K. H.
,
2005
, “
Dielectric Strength of Sub-Millimeter Water Gaps Subjected to Microsecond and Sub-Microsecond Voltage Pulses
,”
IEEE Pulsed Power Conference
, pp.
600
603
.
27.
Radjenović
,
M. R.
,
Radjenovic
,
B.
, and
Savic
,
M.
,
2010
, “
Breakdown Phenomena in Water Vapor Microdischarges
,”
Acta Phys. Polon. A
,
117
(
5
), pp.
752
755
.
28.
Nam
,
S. K.
, and
Verboncoeur
,
J. P.
,
2008
, “
Global Model for High Power Microwave Breakdown at High Pressure
,”
Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference
,
1253
, pp.
564
566
.
29.
Nam
,
S. K.
,
Lim
,
C.
, and
Verboncoeur
,
J. P.
,
2009
, “
Dielectric Window Breakdown in Oxygen Gas: Global Model and Particle-in-Cell Approach
,”
Phys. Plasmas
,
16
(
2
), p.
023501
.10.1063/1.3068746
30.
Heinz
,
K.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Surla
,
V.
,
2011
, “
An Investigation of Magnetic-Field-Assisted Material Removal in Micro-EDM for Nonmagnetic Materials
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021002
.10.1115/1.4003488
You do not currently have access to this content.