In this paper, a novel approach to the derivation of the tool-life distribution, when the tool useful life ends after a progressive wear process, is presented. It is based on the diffusion theory and exploits the Fokker–Planck equation. The Fokker–Planck coefficients are derived on the basis of the injury theory assumptions. That is, tool-wear occurs by detachment of small particles from the tool working surfaces, which are assumed to be identical and time-independent. In addition, they are supposed to be small enough to consider the detachment process as continuous. The tool useful life ends when a specified total volume of material is thus removed. Tool-life distributions are derived in two situations: (i) both Fokker–Planck coefficients are time-dependent only and (ii) the diffusion coefficient is neglected and the drift is wear-dependent. Theoretical results are finally compared to experimental data concerning flank wear land in continuous turning of a C40 carbon steel bar adopting a P10 type sintered carbide insert. The adherence to the experimental data of the tool-life distributions derived exploiting the Fokker–Planck equation is satisfactory. Moreover, the tool-life distribution obtained, when the diffusion coefficient is neglected and the drift is wear-dependent, is able to well-represent the wear behavior at intermediate and later times.

References

References
1.
Gray
,
A. E.
,
Seidmann
,
A.
, and
Stecke
,
K. E.
,
1993
, “
A Synthesis of Decision Models for Tool Management in Automated Manufacturing
,”
Manage. Sci.
,
39
(5), pp.
549
567
.10.1287/mnsc.39.5.549
2.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2009
,
Manufacturing Engineering and Technology
,
6th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
3.
Rossetto
,
S.
, and
Levi
,
R.
,
1977
, “
Fracture and Wear as Factors Affecting Stochastic Tool-Life Models and Machining Economics
,”
ASME J. Manuf. Sci. Eng.
,
99
(1), pp.
281
286
.10.1115/1.3439156
4.
Natarajan
,
U.
,
Periasamy
,
V. M.
, and
Saravanan
,
R.
,
2007
, “
Application of Particle Swarm Optimisation in Artificial Neural Network for the Prediction of Tool Life
,”
Int. J. Adv. Manuf. Technol.
,
31
, pp.
871
876
.10.1007/s00170-005-0252-1
5.
Vagnorius
,
Z.
,
Rausand
,
M.
, and
Sørby
,
K.
,
2010
, “
Determining Optimal Replacement Time for Metal Cutting Tools
,”
Eur. J. Oper. Res.
,
206
, pp.
407
416
.10.1016/j.ejor.2010.03.023
6.
Taylor
,
F. W.
,
1907
, “
On the Art of Cutting Metals
,”
ASME Trans.
,
28
, pp.
310
350
.
7.
Lamond
,
B. F.
, and
Sodhi
,
M. S.
,
1997
, “
Using Tool Life Models to Minimize Processing Time on a Flexible Machine
,”
IIE Trans.
,
29
, pp.
611
621
.
8.
Marksberry
,
P. W.
, and
Jawahir
,
I. S.
,
2008
, “
A Comprehensive Tool-Wear/Tool-Life Performance Model in the Evaluation of NDM (Near Dry Machining) for Sustainable Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
878
886
.10.1016/j.ijmachtools.2007.11.006
9.
Xiong
,
J.
,
Guo
,
Z.
,
Yang
,
M.
,
Wan
,
W.
, and
Dong
,
G.
,
2012
, “
Tool Life and Wear of WC-TiC-Co Ultrafine Cemented Carbide During Dry Cutting of AISI H13 Steel
,”
Ceram. Int.
,
39
, pp.
337
346
.10.1016/j.ceramint.2012.06.031
10.
Li
,
C. R.
, and
Sarker
,
B. R.
,
2013
, “
Lifespan Prediction of Cutting Tools for High-Value-Added Products
,”
Int. J. Adv. Manuf. Technol.
,
69
, pp.
1887
1894
.10.1007/s00170-013-5160-1
11.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating. Part 1: Milling Tool Life Model Using a Discrete Grid Method
,”
Precis. Eng.
,
38
, pp.
9
17
.10.1016/j.precisioneng.2013.06.006
12.
Karandikar
,
J. M.
,
Abbas
,
A. E.
, and
Schmitz
,
T. L.
,
2014
, “
Tool Life Prediction Using Bayesian Updating. Part 2: Turning Tool Life Using a Markov Chain Monte Carlo Approach
,”
Precis. Eng.
,
38
, pp.
18
27
.10.1016/j.precisioneng.2013.06.007
13.
Sekhon
,
G. S.
,
1983
, “
A Simulation Model of Machining Economics Incorporating Stochastic Variability of Work and Tool Properties
,”
Int. J. Mach. Tool Des. Res.
,
23
, pp.
61
70
.10.1016/0020-7357(83)90007-0
14.
Iakovou
,
E.
,
Ip
,
C. M.
, and
Koulamas
,
C.
,
1996
, “
Machining Economics With Phase-Type Distributed Tool Lives and Periodic Maintenance Control
,”
Comput. Oper. Res.
,
23
, pp.
53
62
.10.1016/0305-0548(94)00092-M
15.
Noël
,
M.
,
Lamond
,
B. F.
, and
Sodhi
,
M. S.
,
2009
, “
Simulation of Random Tool Lives in Metal Cutting on a Flexible Machine
,”
Int. J. Prod. Res.
,
47
, pp.
1835
1855
.10.1080/00207540701644169
16.
Kaspi
,
M.
, and
Shabtay
,
D.
,
2001
, “
Optimization of the Machining Economics Problem Under the Periodic Control Strategy
,”
Int. J. Prod. Res.
,
39
, pp.
3889
3900
.10.1080/00207540110068772
17.
Ramalingam
,
S.
, and
Watson
,
J. D.
,
1977
, “
Tool-Life Distributions—Part 1: Single-Injury Tool-Life Model
,”
ASME J. Manuf. Sci. Eng.
,
99
(3), pp.
519
522
.10.1115/1.3439271
18.
Ramalingam
,
S.
,
1977
, “
Tool-Life Distributions—Part 2: Multiple-Injury Tool-Life Model
,”
ASME J. Manuf. Sci. Eng.
,
99
(3), pp.
523
528
.10.1115/1.3439272
19.
Makis
,
V.
,
1995
, “
Optimal Replacement of a Tool Subject to Random Failure
,”
Int. J. Prod. Econ.
,
41
, pp.
249
256
.10.1016/0925-5273(95)00061-5
20.
Liu
,
P. H.
,
Makis
,
V.
, and
Jardine
,
A. K. S.
,
2001
, “
Scheduling of the Optimal Tool Replacement Times in a Flexible Manufacturing System
,”
IIE Trans.
,
33
(6), pp.
487
495
.10.1080/07408170108936848
21.
Galante
,
G.
,
Lombardo
,
A.
, and
Passannanti
,
A.
,
1998
, “
Tool-Life Modeling as a Stochastic Process
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
1361
1369
.10.1016/S0890-6955(98)00019-4
22.
Arsecularatne
,
J. A.
,
Zhang
,
L. C.
, and
Montross
,
C.
,
2006
, “
Wear and Tool Life of Tungsten Carbide, PCBN and PCD Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
482
491
.10.1016/j.ijmachtools.2005.07.015
23.
Braglia
,
M.
, and
Minari
,
P.
,
1994
, “
On the Relaxation of the Energy Distribution Function of Light Particles in Heavy Gases
,”
Contrib. Plasma Phys.
,
34
, pp.
711
724
.10.1002/ctpp.2150340604
24.
Chandrasekhar
,
S.
,
1943
, “
Stochastic Problems in Physics and Astronomy
,”
Rev. Mod. Phys.
,
15
, pp.
1
89
.10.1103/RevModPhys.15.1
25.
Reichl
,
L. E.
,
1980
,
A Modern Course in Statistical Physics
,
University of Texas Press, Austin, TX.
26.
Reif
,
F.
,
1965
,
Fundamentals of Statistical and Thermal Physics
,
McGraw-Hill
,
New York
.
27.
Braglia
,
M.
,
1990
, “
Stochastic Theory of Stock Market, 2. A Theory of Stock-Price Volatility
,” INFM Report No. 90-A02.
28.
Braglia
,
M.
,
1990
, “
On the Variance of Stock Price Distributions
,”
Econ. Lett.
,
33
(2), pp.
171
173
.10.1016/0165-1765(90)90164-V
29.
Braglia
,
M.
,
1990
, “
A Note on Stock Price Volatility
,”
Riv. Mat. Univ. Parma
,
16
, pp.
263
269
.
30.
Giardini
,
C.
,
Pellegrini
,
G.
,
Paganella
,
R.
, and
Bugini
,
A.
,
1991
, “
Experimental Results in Continuous Turning: The Feed Influence on Tool Wear
,”
Proceedings of ICIM’91 Conference
, Torino, Italy.
31.
Giardini
,
C.
,
Pellegrini
,
G.
,
Paganella
,
R.
, and
Bugini
,
A.
,
1990
, “
Sintered Carbide Tool Tip Behaviour in Continuous Turning Operations: Experimental Results
,” Internal Report of the Dipartimento di Ingegneria Meccanica, Universita' di Brescia, Brescia, Italy.
32.
Blanks
,
H. S.
,
1992
,
Reliability in Procurement and Use: From Specification to Replacement
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.