Dry turning of commercially pure aluminum was performed with carbide inserts to generate tool wear. Thus, the wear on the carbides tools were generated by purely interacting with aluminum and without any abrasive, which would be the baseline wear for all aluminum alloys. The flank wear was the main mode, which increased with the cutting speed and decreased as the grain size of the carbides increases. Two types of tool wear pattern have been observed with scanning electron microscopy (SEM) and laser scanning confocal microscope (LSCM): (1) the cavities left from the carbide grains which were dislodged by the adhered layer of the work material and (2) the abrasion on the flank surface caused by the dislodged carbide grains. The width of the scoring marks was correlated with the carbide grain size, which corroborates the abrasion by the dislodged carbide grains from the carbide tool. Energy-dispersive X-ray spectroscopy (EDX) showed that the concentration of the cobalt binder was reduced on the worn area of the insert. The preferential wear of the cobalt binder is believed to facilitate the carbide grain pull-out. Therefore, the wear mechanism in turning pure aluminum is a combination of adhesion and abrasion.

References

References
1.
Salazar
,
K.
, and
McNutt
,
M. K.
, 2012, “Mineral Commodity Summaries,” U.S. Geological Survey, Reston, VA.
2.
List
,
G.
,
Nouari
,
M.
,
Gehin
,
D.
,
Gomez
,
S.
,
Manaud
,
J. P.
,
Petitcorps
,
Y. L.
, and
Girot
,
F.
,
2005
, “
Wear Behaviour of Cemented Carbide Tools in Dry Machining of Aluminium Alloy
,”
Wear
,
259
(7–12), pp.
1177
1189
.10.1016/j.wear.2005.02.056
3.
Nouari
,
M.
,
List
,
G.
,
Girot
,
F.
, and
Coupard
,
D.
,
2003
, “
Experimental Analysis and Optimisation of Tool Wear in Dry Machining of Aluminium Alloys
,”
Wear
,
255
(7–12), pp.
1359
1368
.10.1016/S0043-1648(03)00105-4
4.
Rivero
,
A.
,
Aramendi
,
G.
,
Herranz
,
S.
, and
Lopez de Lacalle
,
L. N.
,
2006
, “
An Experimental Investigation of the Effect of Coatings and Cutting Parameters on the Dry Drilling Performance of Aluminium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
28
(1–2), pp.
1
11
.10.1007/s00170-004-2349-3
5.
Girot
,
F.
,
Gutierrez-Orrantia
,
M. E.
,
Calamaz
,
M.
, and
Coupard
,
D.
,
2011
, “
Modeling and Adhesive Tool Wear in Dry Drilling of Aluminum Alloys
,”
AIP Conf. Proc.
,
1315
, pp.
1639
1644
.
6.
Hu
,
J.
, and
Chou
,
Y. K.
,
2007
, “
Characterizations of Cutting Tool Flank Wear-Land Contact
,”
Wear
,
263
(7–12), pp.
1454
1458
.10.1016/j.wear.2007.01.080
7.
Roy
,
P.
,
Sarangi
,
S. K.
,
Ghosh
,
A.
, and
Chattopadhyay
,
A. K.
,
2009
, “
Machinability Study of Pure Aluminium and Al–12% Si Alloys Against Uncoated and Coated Carbide Inserts
,”
Int. J. Refract. Met. Hard Mater.
,
27
(3), pp.
535
544
.10.1016/j.ijrmhm.2008.04.008
8.
Prengel
,
H. G.
,
Pfouts
,
W. R.
, and
Santhanam
,
A. T.
,
1998
, “
State of the Art in Hard Coatings for Carbide Cutting Tools
,”
Surf. Coating Technol.
,
102
(
3
), pp.
183
190
.10.1016/S0257-8972(96)03061-7
9.
Kramer
,
B. M.
, and
Judd
,
P.
,
1985
, “
Computational Design of Wear Coatings
,”
J. Vac. Sci. Technol. A
,
3
(
6
), pp.
2439
2444
.10.1116/1.572854
10.
Nouari
,
M.
,
List
,
G.
,
Girot
,
F.
, and
Gehin
,
D.
,
2005
, “
Effect of Machining Parameters and Coating on Wear Mechanisms in Dry Drilling of Aluminum Alloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1436
1442
.10.1016/j.ijmachtools.2005.01.026
11.
Trent
,
E. M.
, and
Wright
,
P. K.
,
2000
,
Metal Cutting,
4th ed.
,
Butterworth-Heinemann
,
Woburn
, MA, pp.
157
159
, 195–199.
12.
Williams
,
J. E.
, and
Rollason
,
C. E.
,
1970
, “
Metallurgical and Practical Machining Parameters Affecting Built-Up-Edge Formation in Metal Cutting
,”
J. Inst. Met.
,
95
, pp.
144
153
.
13.
Olortegui-Yume
,
J.
, and
Kwon
,
P.
, “
Crater Wear Patterns Analysis on Multi-Layer Coated Carbides Using the Wavelet Transform
,”
Wear
,
268
(3–4), pp.
493
504
.10.1016/j.wear.2009.09.009
14.
Carrilero
,
M. S.
,
Bienvenido
,
R.
,
Sanchez
,
J. M.
,
Alvarez
,
M.
,
Gonzalez
,
A.
, and
Marcos
,
M.
,
2002
, “
A SEM and EDS Insight Into the BUL and BUE Differences in the Turning Processes of AA2024 Al-Cu Alloy
,”
Int. J. Mach. Tools Manuf.
,
42
(2), pp.
215
220
.10.1016/S0890-6955(01)00112-2
15.
Weinert
,
K.
, and
Konig
,
W.
,
1993
, “
A Consideration of Tool Wear Mechanism When Machining Metal Matrix Composites (MMC)
,”
CIRP Annals
,
42
(
1
), pp.
95
98
.10.1016/S0007-8506(07)62400-7
16.
Huang
,
Y.
, and
Liang
,
S. Y.
,
2004
, “
Modeling of CBN Tool Flank Wear Progression in Finish Hard Turning
,”
ASME J. of Mnfg. Sci. and Eng.
,
126
(1), pp.
98
106
.10.1115/1.1644543
17.
Baldoni
,
J. G.
,
Wayne
,
S. F.
, and
Buljan
,
S. T.
,
1985
, “
Cutting Tool Materials: Mechanical Properties-Wear Resistance Relationships
,”
ASLE Trans.
,
29
(
3
), pp.
347
352
.10.1080/05698198608981695
18.
Kwon
,
P.
,
2000
, “
Predictive Models for Flank Wear on Coated Inserts
,”
ASME J. Tribol.
,
122
(1), pp.
340
347
.10.1115/1.555365
19.
Rabinowicz
,
E.
,
1977
, “
Abrasive Wear Resistance as a Materials Test
,”
Lubr. Eng.
,
33
(
7
),
pp. 378–381
.
20.
Moore
,
M. A.
,
1974
, “
A Review of Two-Body Abrasive Wear
,”
Wear
,
27
(1), pp.
1
17
.10.1016/0043-1648(74)90080-5
21.
Chou
,
Y. K.
, and
Evans
,
C. J.
,
1997
, “
Tool Wear Mechanism in Continuous Cutting of Hardened Tool Steels
,”
Wear
,
212
(1), pp.
59
65
.10.1016/S0043-1648(97)00139-7
22.
Jawaid
,
A.
,
Che-Haron
,
C. H.
, and
Abdullah
,
A.
,
1999
, “
Tool Wear Characteristics in Turning of Titanium Alloy Ti-6246
,”
J. Mater. Process. Technol.
, 92-93, pp.
329
334
.10.1016/S0924-0136(99)00246-0
23.
Shetty
,
D. K.
,
Wright
,
I. G.
,
Mincer
,
P. N.
, and
Clauer
,
A. H.
,
1985
, “
Indentation Fracture of WC-Co Cermets
,”
J. Mater. Sci.
,
20
(5), pp.
1873
1882
.10.1007/BF00555296
24.
Ingelstrom
,
N.
, and
Hordberg
,
H.
,
1974
, “
The Fracture Toughness of Cemented Tungsten Carbides
,”
Eng. Fract. Mech.
,
6
(3), pp.
597
607
.10.1016/0013-7944(74)90016-2
25.
Pepper
,
S. V.
,
1976
, “
Effect of Adsorbed Films on Friction of Al2O3-Metal Systems
,”
J. Appl. Phys.
,
47
, pp.
2579
2584
.10.1063/1.322950
26.
Pepper
,
S. V.
,
1976
, “
Shear Strength of Metal-Sapphire Contacts
,”
J. Appl. Phys.
,
47
(
3
), pp.
801
808
.10.1063/1.322711
27.
Reimer
,
L.
,
1999
,
Transmission Electron Microscopy
,
4th ed
.,
Springer
,
Berlin
, p.
488
.
You do not currently have access to this content.