This paper describes the application of Bayesian inference to the identification of force coefficients in milling. Mechanistic cutting force coefficients have been traditionally determined by performing a linear regression to the mean force values measured over a range of feed per tooth values. This linear regression method, however, yields a deterministic result for each coefficient and requires testing at several feed per tooth values to obtain a high level of confidence in the regression analysis. Bayesian inference, on the other hand, provides a systematic and formal way of updating beliefs when new information is available while incorporating uncertainty. In this work, mean force data is used to update the prior probability distributions (initial beliefs) of force coefficients using the Metropolis-Hastings (MH) algorithm Markov chain Monte Carlo (MCMC) approach. Experiments are performed at different radial depths of cut to determine the corresponding force coefficients using both methods and the results are compared.

References

References
1.
Schmitz
,
T.
, and
Smith
,
K. S.
,
2009
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
2.
Kumanchik
,
L.
, and
Schmitz
,
T.
,
2007
, “
Improved Analytical Chip Thickness Model for Milling
,”
Precis. Eng.
,
31
, pp.
317
324
.10.1016/j.precisioneng.2006.12.001
3.
Andrieu
,
C.
,
de Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learn.
,
50
, pp.
5
43
.10.1023/A:1020281327116
4.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equations of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.10.1063/1.1699114
5.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
, pp.
97
109
.10.1093/biomet/57.1.97
6.
Roberts
,
G. O.
,
Gelman
,
A.
, and
Gilks
,
W. R.
,
1997
, “
Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms
,”
Ann. Appl. Probab.
,
7
(
1
), pp.
110
112
.10.1214/aoap/1034625254
7.
Chib
,
S.
, and
Greenberg
,
E.
,
1995
, “
Understanding the Metropolis Hastings Algorithm
,”
The Am. Stat.
,
49
(
4
), pp.
327
335
.
8.
Gelfand
,
A.
, and
Smith
,
A.
,
1990
, “
Sampling-Based Approaches to Calculating Marginal Densities
,”
J. Am. Stat. Assoc.
,
85
(
410
), pp.
398
409
.10.1080/01621459.1990.10476213
9.
Duncan
,
G. S.
,
Kurdi
,
M.
,
Schmitz
,
T.
, and
Snyder
,
J.
,
2006
, “
Uncertainty Propagation for Selected Analytical Milling Stability Limit Analyses
,”
Trans. NAMRI/SME
,
34
, pp.
17
24
. Available at: http://plaza.ufl.edu/mhkurdi/namrc.pdf
You do not currently have access to this content.