In this paper, a newly proposed machining method named “surface defect machining” (SDM) was explored for machining of nanocrystalline beta silicon carbide (3C-SiC) at 300 K using MD simulation. The results were compared with isothermal high temperature machining at 1200 K under the same machining parameters, emulating ductile mode micro laser assisted machining (μ-LAM) and with conventional cutting at 300 K. In the SDM simulation, surface defects were generated on the top of the (010) surface of the 3C-SiC work piece prior to cutting, and the workpiece was then cut along the 〈100〉 direction using a single point diamond cutting tool at a cutting speed of 10 m/s. Cutting forces, subsurface deformation layer depth, temperature in the shear zone, shear plane angle and friction coefficient were used to characterize the response of the workpiece. Simulation results showed that SDM provides a unique advantage of decreased shear plane angle which eases the shearing action. This in turn causes an increased value of average coefficient of friction in contrast to the isothermal cutting (carried at 1200 K) and normal cutting (carried at 300 K). The increase of friction coefficient, however, was found to aid the cutting action of the tool due to an intermittent dropping in the cutting forces, lowering stresses on the cutting tool and reduced operational temperature. Analysis shows that the introduction of surface defects prior to conventional machining can be a viable choice for machining a wide range of ceramics, hard steels and composites compared to hot machining.

References

References
1.
Rashid
,
W. B.
,
Goel
,
S.
,
Luo
,
X.
, and
Ritchie
,
J. M.
,
2013
, “
An Experimental Investigation for the Improvement of Attainable Surface Roughness During Hard Turning Process
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
2
), pp.
338
342
.10.1177/0954405412464217
2.
Rashid
,
W. B.
,
Goel
,
S.
,
Luo
,
X.
, and
Ritchie
,
J. M.
,
2013
, “
The Development of a Surface Defect Machining Method for Hard Turning Processes
,”
Wear
,
302
(
1–2
), pp.
1124
1135
.10.1016/j.wear.2013.01.048
3.
Goel
,
S.
,
Stukowski
,
A.
,
Luo
,
X.
,
Agrawal
,
A.
, and
Reuben
,
R. L.
,
2013
, “
Anisotropy of Single-Crystal 3C–SiC During Nanometric Cutting
,”
Model. Simul. Mater. Sci. Eng.
,
21(
6
)
, p.
065004
.10.1088/0965-0393/21/6/065004
4.
Goel
,
S.
,
Luo
,
X.
,
Reuben
,
R. L.
,
Rashid
,
W. B.
, and
Sun
,
J.
,
2012
, “
Single Point Diamond Turning of Single Crystal Silicon Carbide: Molecular Dynamic Simulation Study
,”
Key Engineering Materials
,
Liverpool
. pp.
150
155
.10.4028/www.scientific.net/KEM.496.150
5.
Goel
,
S.
,
Luo
,
X.
, and
Reuben
,
R. L.
,
2012
, “
Shear Instability of Nanocrystalline Silicon Carbide During Nanometric Cutting
,”
Appl. Phys. Lett.
,
100
(
23
), p.
231902
.10.1063/1.4726036
6.
Goel
,
S.
,
Luo
,
X.
,
Comley
,
P.
,
Reuben
,
R. L.
, and
Cox
,
A.
,
2013
, “
Brittle–Ductile Transition During Diamond Turning of Single Crystal Silicon Carbide
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
15
21
.10.1016/j.ijmachtools.2012.09.001
7.
Neudeck
,
P. G.
,
2000
, “
SiC Technology
,”
The VLSI Handbook
,
B.
Raton
, ed.,
CRC Press , Boca Raton, FL
, pp.
6.1
6.24
.
8.
Dzurak
,
A.
,
2011
, “
Quantum Computing: Diamond and Silicon Converge
,”
Nature
,
479
(
7371
), pp.
47
48
.10.1038/479047a
9.
Shore
,
P.
,
Cunningham
,
C.
,
DeBra
,
D.
,
Evans
,
C.
,
Hough
,
J.
,
Gilmozzi
,
R.
,
Kunzmann
,
H.
,
Morantz
,
P.
, and
Tonnellier
,
X.
,
2010
, “
Precision Engineering for Astronomy and Gravity Science
,”
CIRP Ann.
,
59
(
2
), pp.
694
716
.10.1016/j.cirp.2010.05.003
10.
Newsome
,
D. A.
,
Sengupta
,
D.
,
Foroutan
,
H.
,
Russo
,
M. F.
, and
van Duin
,
A. C.
,
2012
,
Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I
,”
J. Phys. Chem. C
,
116
(
30
), pp.
16111
16121
.10.1021/jp306391p
11.
Coletti
,
C.
,
Jaroszeski
,
M.
,
Pallaoro
,
A.
,
Hoff
,
A.
,
Iannotta
,
S.
, and
Saddow
,
S.
,
2007
, “
Biocompatibility and Wettability of Crystalline SiC and Si Surfaces
,”
29th Annual International Conference of the IEEE. Engineering in Medicine and Biology Society
, EMBS IEEE.10.1109/IEMBS.2007.4353678
12.
Goel
,
S.
,
Yan
,
J.
,
Luo
,
X.
, and
Agrawal
,
A.
,
2013
, “Incipient Plasticity in 4H-SiC During Quasistatic Nanoindentation,”
J. Mech. Behav. of Biomed.l Materials
, (in press).10.1016/j.jmbbm.2013.12.005
13.
Perrone
,
D.
,
2007
, “
Process and Characterisation Techniques on 4H—Silicon Carbide
,” Micronanotechnology, Ph.D. thesis, Politecnico di Torino, Torino, Italy.
14.
Luo
,
X.
,
Goel
,
S.
, and
Reuben
,
R. L.
,
2012
, “
A Quantitative Assessment of Nanometric Machinability of Major Polytypes of Single Crystal Silicon Carbide
,”
J. Europ. Ceram. Soc.
,
32
(
12
), pp.
3423
3434
.10.1016/j.jeurceramsoc.2012.04.016
15.
Goel
,
S.
,
Luo
,
X.
, and
Reuben
,
R. L.
,
2012
, “
Molecular Dynamics Simulation Model for the Quantitative Assessment of Tool Wear During Single Point Diamond Turning of Cubic Silicon Carbide
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
402
408
.10.1016/j.commatsci.2011.07.052
16.
Ravindra
,
D.
,
2011
, “Ductile Mode Material Removal of Ceramics and Semiconductors,” Ph.D. thesis, Western Michigan University, Kalamazoo, MI, p. 312.
17.
Shayan
,
A. R.
,
Poyraz
,
H. B.
,
Ravindra
,
D.
,
Ghantasala
,
M.
, and
Patten
,
J. A.
,
2009
, “
Force Analysis, Mechanical Energy and Laser Heating Evaluation of Scratch Tests on Silicon Carbide (4H-SiC) in Micro-Laser Assisted Machining (μ-LAM) Process
ASME Conf. Proc.
, MSEC2009 -84207, pp. 827–832.10.1115/MSEC2009-84207
18.
Brinksmeier
,
E.
, and
Gläbe
,
R.
,
2001
, “
Advances in Precision Machining of Steel
,”
CIRP Ann.
,
50
(
1
), pp.
385
388
.10.1016/S0007-8506(07)62146-5
19.
Evans
,
C.
, and
Bryan
,
J. B.
,
1991
, “
Cryogenic Diamond Turning of Stainless Steel
,”
CIRP Ann.
,
40
(
1
), pp.
571
575
.10.1016/S0007-8506(07)62056-3
20.
Casstevens
,
J. M.
,
1983
, “
Diamond Turning of Steel in Carbon-Saturated Atmospheres
,”
Precis. Eng.
,
5
(
1
), pp.
9
15
.10.1016/0141-6359(83)90063-6
21.
Brehl
,
D. E.
, and
Dow
,
T. A.
,
2008
, “
Review of Vibration-Assisted Machining
,”
Precis. Eng.
,
32
(
3
), pp.
153
172
.10.1016/j.precisioneng.2007.08.003
22.
Shamoto
,
E.
, and
Moriwaki
,
T.
,
1999
, “
Ultaprecision Diamond Cutting of Hardened Steel by Applying Elliptical Vibration Cutting
,”
CIRP Ann.
,
48
(
1
), pp.
441
444
.10.1016/S0007-8506(07)63222-3
23.
Moriwaki
,
T.
, and
Shamoto
,
E.
,
1991
, “
Ultraprecision Diamond Turning of Stainless Steel by Applying Ultrasonic Vibration
,”
CIRP Ann.
,
40
(
1
), pp.
559
562
.10.1016/S0007-8506(07)62053-8
24.
Yan
,
J.
,
Zhang
,
Z.
, and
Kuriyagawa
,
T.
,
2011
, “
Effect of Nanoparticle Lubrication in Diamond Turning of Reaction-Bonded SiC
,”
Int. J. Autom. Technol.
,
5
(
3
), pp.
307
312
. Available at: http://www.fujipress.jp/finder/xslt.php?mode=present&inputfile=IJATE000500030007.xml
25.
Inada
,
A.
,
Min
,
S.
, and
Ohmori
,
H.
,
2011
, “
Micro Cutting of Ferrous Materials Using Diamond Tool Under Ionized Coolant With Carbon Particles
,”
CIRP Ann.
,
60
(
1
), pp.
97
100
.10.1016/j.cirp.2011.03.089
26.
Yan
,
J.
,
Zhang
,
Z.
, and
Kuriyagawa
,
T.
,
2010
, “
Tool Wear Control in Diamond Turning of High-Strength Mold Materials By Means of Tool Swinging
,”
CIRP Ann.
,
59
(
1
), pp.
109
112
.10.1016/j.cirp.2010.03.067
27.
Yoshino
,
M.
,
Ogawa
,
Y.
, and
Aravindan
,
S.
,
2005
, “
Machining of Hard-Brittle Materials by a Single Point Tool Under External Hydrostatic Pressure
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
837
845
.10.1115/1.2035695
28.
Zareena
,
A. R.
, and
Veldhuis
,
S. C.
,
2012
, “
Tool Wear Mechanisms and Tool Life Enhancement in Ultra-Precision Machining of Titanium
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
560
570
.10.1016/j.jmatprotec.2011.10.014
29.
Brinksmeier
,
E.
, and
Preuss
,
W.
,
2012
, “
Micro-Machining
,”
Philos. Trans. R. Soc. A
,
370
(
1973
), pp.
3973
3992
.10.1098/rsta.2011.0056
30.
Yan
,
J.
,
Syoji
,
K.
,
Kuriyagawa
,
T.
, and
Suzuki
,
H.
,
2002
, “
Ductile Regime Turning at Large Tool Feed
,”
J. Mater. Process. Technol.
,
121
(
2–3
), pp.
363
372
.10.1016/S0924-0136(01)01218-3
31.
Kawasegi
,
N.
,
Sugimori
,
H.
,
Morimoto
,
H.
,
Morita
,
N.
, and
Hori
,
I.
,
2009
,
Development of Cutting Tools With Microscale and Nanoscale Textures to Improve Frictional Behavior
,”
Precis. Eng.
,
33
(
3
), pp.
248
254
.10.1016/j.precisioneng.2008.07.005
32.
Chang
,
W.
,
Sun
,
J.
,
Luo
,
X.
,
Ritchie
,
J. M.
, and
Mack
,
C.
,
2011
, “
Investigation of Microstructured Milling Tool for Deferring Tool Wear
,”
Wear
,
271
(
9–10
), pp.
2433
2437
.10.1016/j.wear.2010.12.026
33.
Tsurimoto
,
S.
, and
Moriwaki
,
T.
,
2012
, “
Machining of Carbides for Dies and Moulds—P 6.24
,”
12th International EUSPEN conference
, Stockholm.
34.
Goel
,
S.
,
Luo
,
X.
,
Reuben
,
R. L.
, and
Rashid
,
W. B.
,
2012
, “
Replacing Diamond Cutting Tools With CBN for Efficient Nanometric Cutting of Silicon
,”
Mater. Lett.
,
68
(
0
), pp.
507
509
.10.1016/j.matlet.2011.11.028
35.
Tanaka
,
H.
, and
Shimada
,
S.
,
2013
, “Damage-Free Machining of Monocrystalline Silicon Carbide,”
CIRP Annals - Manuf. Technol.
,
62
(1), 2013, pp. 55–58.10.1016/j.cirp.2013.03.098
36.
Yan
,
J.
,
Syoji
,
K.
, and
Tamaki
,
J.
,
2003
, “
Some Observations on the Wear of Diamond Tools in Ultra-Precision Cutting of Single-Crystal Silicon
,”
Wear
,
255
(
7-12
), pp.
1380
1387
.10.1016/S0043-1648(03)00076-0
37.
Davies
,
M. A.
,
Evans
,
C. J.
,
Patterson
,
S. R.
,
Vohra
,
R.
, and
Bergner
,
B. C.
,
2003
, “
Application of Precision Diamond Machining to the Manufacture of Micro-Photonics Components
,”
Lithographic and Micromachining Techniques for Optical Component Fabrication II
,
SPIE
,
San Diego, CA
.10.1117/12.506373
38.
Tomohiro
,
F.
,
Yasuyuki
,
K.
,
Takayoshi
,
W.
,
Junichi
,
S.
,
Kunihiro
,
T.
, and
Nakai
,
T.
,
2011
, “
High Precision Cutting of Hardened Steel With Newly Developed PCBN Tools
,” accessed from http://imtp.free.fr/imtp2/C4/Fukaya_Tomohiro.pdf on 10/7/2011.
39.
Grimm
,
U.
,
Muller
,
C.
, and,
Wolfle
,
W. M.
,
2004
, “
Fabrication of Surfaces in Optical Quality on Pretentious Tools Steels by Ultra Precision Machining
,”
Proceedings of the 4th Euspen International Conference
, Glasgow, UK.
40.
Patten
,
J.
,
Gao
,
W.
, and
Yasuto
,
K.
,
2005
, “
Ductile Regime Nanomachining of Single-Crystal Silicon Carbide
,”
ASME J. Manuf. Sci.
,
127
(
3
), pp.
522
532
.10.1115/1.1949614
41.
Yan
,
J.
,
Zhang
,
Z.
, and
Kuriyagawa
,
T.
,
2009
, “
Mechanism for Material Removal in Diamond Turning of Reaction-Bonded Silicon Carbide
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
366
374
.10.1016/j.ijmachtools.2008.12.007
42.
Patten
,
J. A.
,
2000
, “
Ductile Regime Nanocutting of Silicon Nitride
,”
Proceedings ASPE 2000 15th Annual Meeting
, pp.
106
109
.
43.
Hung
,
N. P.
, and
Zhong
,
C. H.
,
1996
, “
Cumulative Tool Wear in Machining Metal Matrix Composites Part I: Modelling
,”
J. Mater. Process Technol.
,
58
(
1
), pp.
109
113
.10.1016/0924-0136(95)02114-0
44.
John
,
A. P.
,
Jerry
,
J.
,
Biswarup
,
B.
,
Andrew
,
G.
,
Ning
,
F.
, and
Marsh
,
E. R.
,
2007
, “
Chapter 2: Numerical Simulations and Cutting Experiments on Single Point Diamond Machining of Semiconductors and Ceramics
,”
Semiconductor Machining at the Micro-Nano Scale
,
J.
Yan
and
J. A.
Patten
, eds.,
Transworld Research Network
,
Trivandrum, Kerala, India
.
45.
Ravindra
,
D.
, and
Patten
,
J. A.
,
2011
, “
Chapter 4: Ductile Regime Material Removal of Silicon Carbide(SiC)
,”
Silicon Carbide: New Materials, Production methods and application
,
S. H.
Vanger
, ed.,
Nova Publishers
,
Trivandrum, India
, pp.
141
167
.
46.
Niihara
,
K.
,
1979
, “
Slip Systems and Plastic Deformation of Silicon Carbide Single Crystals at High Temperatures
,”
J. Less Common Met.
,
65
(
1
), pp.
155
166
.10.1016/0022-5088(79)90161-9
47.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
48.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD—Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
, pp.
33
38
.10.1016/0263-7855(96)00018-5
49.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p. 015012.10.1088/0965-0393/18/1/015012
50.
Goel
,
S.
,
2013
, “
An Atomistic Investigation on the Nanometric Cutting Mechanism of Hard, Brittle Materials
,” Mechanical Engineering, Ph.D. thesis, Heriot-Watt University, Edinburgh, UK, pp.
1
246
.
51.
Goel
,
S.
,
Luo
,
X.
,
Reuben
,
R. L.
, and
Pen
,
H.
,
2012
, “
Influence of Temperature and Crystal Orientation on Tool Wear During Single Point Diamond Turning of Silicon
,”
Wear
,
284–285
(
0
), pp.
65
72
.10.1016/j.wear.2012.02.010
52.
Goel
,
S.
,
Luo
,
X.
, and
Reuben
,
R. L.
,
2013
, “
Wear Mechanism of Diamond Tools Against Single Crystal Silicon in Single Point Diamond Turning Process
,”
Tribol. Int.
,
57
(
0
), pp.
272
281
.10.1016/j.triboint.2012.06.027
53.
Goel
,
S.
,
Luo
,
X.
,
Reuben
,
R.
, and
Rashid
,
W.
,
2011
, “
Atomistic Aspects of Ductile Responses of Cubic Silicon Carbide During Nanometric Cutting
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
589
.10.1186/1556-276X-6-589
54.
Notman
,
R.
, and
Anwar
,
J.
,
2013
, “
Breaching the Skin Barrier—Insights From Molecular Simulation of Model Membranes
,”
Adv. Drug Deliv. Rev.
,
65
(2), pp. 237–250.10.1016/j.addr.2012.02.011
55.
Schuh
,
C. A.
, and
Lund
,
A. C.
,
2003
, “
Atomistic Basis for the Plastic Yield Criterion of Metallic Glass
,”
Nature Mater.
,
2
(
7
), pp.
449
452
.10.1038/nmat918
56.
Erhart
,
P.
, and
Albe
,
K.
,
2005
, “
Analytical Potential for Atomistic Simulations of Silicon, Carbon, and Silicon Carbide
,”
Phys. Rev. B
,
71
(
3
), p.
035211
.10.1103/PhysRevB.71.035211
57.
Belak
,
J. F.
, and
Stowers
,
I. F.
,
1990
,
A Molecular Dynamics model of Orthogonal Cutting Process
,”
Proceedings of American Society Precision Engineering Annual conference
, pp.
76
79
.
58.
Belak
,
J.
,
1994
, “
Nanotribology: Modelling Atoms When Surfaces Collide
,
Energy and Technology Review
,
Lawrence Livermore National Laboratory, Livermore, CA
.
59.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
2000
, “
Molecular Dynamics Simulation of Atomic-Scale Friction
,”
Phys. Rev. B
,
61
(
20
), pp.
14007
14019
.10.1103/PhysRevB.61.14007
60.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
2000
, “
Simulation of Nanometric Cutting of Single Crystal Aluminum–Effect of Crystal Orientation and Direction of Cutting
,”
Wear
,
242
(
1–2
), pp.
60
88
.10.1016/S0043-1648(00)00389-6
61.
Wang, Z., Liang, Y., Chen, M., Tong, Z., and Chen, J.,
2010
,
Analysis About Diamond Tool Wear in Nano-Metric Cutting of Single Crystal Silicon Using Molecular Dynamics Method
, SPIE Bellingham, WA.10.1117/12.866290
62.
Liang
,
Y. C.
,
Guo
,
Y. B.
,
Chen
,
M. J.
, and
Bai
,
Q. S.
,
2008
, “
Molecular Dynamics Simulation of Heat Distribution During Nanometric Cutting Process
,”
2nd IEEE International of Nanoelectronics Conference
, INEC 2008.10.1109/INEC.2008.4585584
63.
Noreyan
,
A.
,
Amar
,
J. G.
, and
Marinescu
,
I.
,
2005
, “
Molecular Dynamics Simulations of Nanoindentation of Beta-SiC With Diamond Indenter
,”
Mater. Sci. Eng. B
,
117
(
3
), pp.
235
240
.10.1016/j.mseb.2004.11.016
64.
Noreyan
,
A.
, and
Amar
,
J. G.
, 265,
2008
, “
Molecular Dynamics Simulations of Nanoscratching of 3C SiC
,”
Wear
,
265
(
7-8
), pp.
956
962
.10.1016/j.wear.2008.02.020
65.
Rentsch
,
R.
, and
Inasaki
,
I.
,
2006
, “
Effects of Fluids on the Surface Generation in Material Removal Processes—Molecular Dynamics Simulation
,”
CIRP Ann.
,
55
(
1
), pp.
601
604
.10.1016/S0007-8506(07)60492-2
66.
Roundy
,
D.
, and
Cohen
,
M. L.
,
2001
, “
Ideal Strength of Diamond, Si, and Ge
,”
Phys. Rev. B
,
64
(
21
), p.
212103
.10.1103/PhysRevB.64.212103
You do not currently have access to this content.