The atomization-based cutting fluid (ACF) spray system has been found to be effective for improving the tool life and overall productivity during the machining of titanium alloys like Ti–6Al–4 V. The aim of this research is to study droplet spray characteristics of an ACF spray system including droplet entrainment zone (e.g., angle and distance) and droplet-gas co-flow development regions with respect to three ACF spray parameters, viz., droplet and gas velocities, and spray distance. ACF spray experiments are performed by varying droplet and gas velocities. Machining experiments are performed in order to understand the effect of the droplet spray behavior on the machining performance, viz., tool life/wear, and surface roughness during turning of a titanium alloy, Ti–6Al–4 V. The flow development behavior with respect to the spray distance is studied by modeling the droplets entrainment mechanism. The model is validated by the ACF spray experiments. Experiments and the modeling of flow development behavior reveal that a higher droplet velocity and a smaller gas velocity result in smaller droplet entrainment angle leading to a gradual and early development of the co-flow, and a better distribution of the droplets across the jet flare. Machining experiments also show that a higher droplet velocity, a lower gas velocity and a longer spray distance significantly improve tool life and surface finish.

References

References
1.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
, pp.
262
274
.10.1016/S0924-0136(96)00030-1
2.
Palanisamy
,
S.
,
McDonald
,
S. D.
, and
Dargusch
,
M. S.
,
2009
, “
Effects of Coolant Pressure on Chip Formation While Turning Ti6Al4V Alloy
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
739
743
.10.1016/j.ijmachtools.2009.02.010
3.
Hong
,
S. Y.
, and
Ding
,
Y.
,
2001
, “
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
1417
1437
.10.1016/S0890-6955(01)00026-8
4.
Venugopal
,
K. A.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Tool Wear in Cryogenic Turning of Ti–6Al–4V Alloy
,”
Cryogenics
,
47
, pp.
12
18
.10.1016/j.cryogenics.2006.08.011
5.
Venugopal
,
K. A.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Growth of Tool Wear in Turning of Ti–6Al–4V Alloy Under Cryogenic Cooling
,”
Wear
,
262
, pp.
1071
1078
.10.1016/j.wear.2006.11.010
6.
Ezugwu
,
E. O.
,
Da Silva
,
R. B.
,
Bonney
,
J.
, and
Machado
,
Á. R.
,
2005
, “
Evaluation of the Performance of CBN Tools When Turning Ti–6Al–4V Alloy With High Pressure Coolant Supplies
,”
Int. J. Mach. Tools Manuf.
,
45
, pp.
1009
1014
.10.1016/j.ijmachtools.2004.11.027
7.
Nandy
,
A. K.
,
Gowrishankar
,
M. C.
, and
Paul
,
S.
,
2009
, “
Some Studies on High–Pressure Cooling in Turning of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
182
198
.10.1016/j.ijmachtools.2008.08.008
8.
Hong
,
S. Y.
,
Maarkus
,
I.
, and
Jeong
,
W.-C.
,
2001
, “
New Cooling Approach and Tool Life Improvement in Cryogenic Machining of Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
, pp.
2245
2260
.10.1016/S0890-6955(01)00041-4
9.
Pusavec
,
F.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transition to Sustainable Production–Part I: Application on Machining Technologies
,”
J. Cleaner Prod.
,
18
, pp.
174
184
.10.1016/j.jclepro.2009.08.010
10.
Nath
,
C.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Srivastava
,
A. K.
, and
Iverson
,
J.
,
2012
, “
Design and Evaluation of an Atomization–Based Cutting Fluid Spray System in Turning of Titanium Alloy
,”
J. Manuf. Process.
,
14
, pp.
452
459
.10.1016/j.jmapro.2012.09.002
11.
Hoyne
,
A. C.
,
Nath
,
C.
, and
Kapoor
,
S. G.
, “
Characterization of Fluid Film Produced by an Atomization–Based Cutting Fluid (ACF) Spray System During Machining
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051006
.10.1115/1.4025012
12.
Rukosuyev
,
M.
,
Goo
,
C. S.
, and
Jun
,
M. B. G.
,
2010
, “
Understanding the Effects of System Parameters of an Ultrasonic Cutting Fluid Application System for Micromachining
,”
J. Manuf. Process.
,
12
, pp.
92
98
.10.1016/j.jmapro.2010.06.002
13.
Rukosuyev
,
M.
,
Goo
,
C. S.
,
Jun
,
M. B. G.
, and
Park
,
S. S.
,
2010
, “
Design and Development of Cutting Fluid System Based on Ultrasonic atomization for Micro-Machining
,”
Trans. NAMRI/SME
,
38
, pp.
97
104
.
14.
Jun
,
M. B. G.
,
Joshi
,
S. S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization–Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031118
.10.1115/1.2738961
15.
Ghai
,
I.
,
Wentz
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Samuel.
J.
,
2010
, “
Droplet Behavior on a Rotating Surface for Atomization-Based Cutting Fluid Application in Micromachining
,
ASME J. Manuf. Sci. Eng.
,
132
, p.
011017
.10.1115/1.4000859
16.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2013
, “
Analysis of Droplet Spreading on a Rotating Surface and the Prediction of Cooling and Lubrication Performance of an Atomization–Based Cutting Fluid System
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031003
.10.1115/1.4024153
17.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
, pp.
21
32
.
18.
Papadopoulos
,
G.
, and
Pitts
,
W. M.
,
1998
, “
Scaling the Near-Field Centerline Mixing Behavior of Axisymmetric Turbulent Jets
,”
AIAA J.
,
36
, pp.
1635
1642
.10.2514/2.565
19.
Pitts
,
W. M.
,
1991
, “
Reynolds Number Effects on the Mixing Behavior of Axisymmetric Turbulent Jets
,”
Exp. Fluids
,
11
, pp.
135
141
.10.1007/BF00190289
20.
Pitts
,
W. M.
,
1991
, “
Effects of Global Density Ratio on the Centerline Mixing Behavior of Axisymmetric Turbulent Jets
,”
Exp. Fluids
,
11
, pp.
125
134
.10.1007/BF00190288
21.
Fellouah
,
H.
,
Ball
,
C. G.
, and
Pollard
,
A.
,
2009
, “
Reynolds Number Effects Within the Development Region of a Turbulent Round Free Jet
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3943
3954
.10.1016/j.ijheatmasstransfer.2009.03.029
22.
Parker
,
R.
,
Rajagopalan
,
S.
, and
Antonia
,
R. A.
,
2003
, “
Control of an Axisymmetric Jet Using a Passive Ring
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
545
552
.10.1016/S0894-1777(02)00268-6
23.
Rothe
,
P. H.
, and
Block
,
J. A.
,
1977
, “
Aerodynamic Behavior of Liquid Sprays
,”
Int. J. Multiphase Flow
,
3
, pp.
263
272
.10.1016/0301-9322(77)90006-4
24.
Lee
,
S. Y.
, and
Tankin
,
R. S.
,
1984
, “
Study of Liquid Spray (Water) in a Non-Condensable Environment (Air)
,”
Int. J. Heat Mass Transfer
,
27
, pp.
351
361
.10.1016/0017-9310(84)90282-5
25.
Nath
,
C.
,
Kapoor
,
S. G.
,
Srivastava
,
A. K.
, and
Iverson
,
J.
,
2012
, “
Effect of Fluid Concentration in Titanium Machining with an Atomization–Based Cutting Fluid (ACF) Spray System
,”
J. Manuf. Process.
(in press).10.1016/j.jmapro.2013.06.002
27.
Maczyński
,
J. F. J.
,
1961
, “
A Round Jet in an Ambient Co-Axial Stream
,”
J. Fluid Mech.
,
13
, pp.
597
608
.10.1017/S0022112062000968
28.
Hinze
,
O.
,
2004
,
Turbulence
,
McGraw-Hill
,
New York
.
30.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
. Available at: http://journals.cambridge.org/abstract_S0022112000003384
You do not currently have access to this content.