Poly(L-lactic acid) (PLLA) is of interest in drug delivery applications for its biodegradable and biocompatible properties. Polymer-controlled drug delivery relies on the release of embedded drug molecules from the polymer matrix during its degradation. PLLA degradation exhibits an induction period, during which an insignificant amount of degraded products and embedded drug can be released. Due to this induction period, drug release is initially nonlinear, a complication in drug delivery applications. PLLA degradation is a function of crystallinity, such that control over its crystallinity tailors drug release over time. In this study, the effect of laser-induced PLLA crystallinity reduction on degradation is investigated. Samples having lower surface crystallinity are shown to have higher rates of molecular weight reduction and earlier mass loss than nonlaser-treated samples, as observed from gel permeation chromatography and mass change. Wide-angle X-ray diffraction measurements show that crystallinity increases with degradation. A numerical model is implemented from hydrolysis and diffusion mechanisms to investigate the effect of laser irradiation on biodegradation. Controlled laser treatment of PLLA offers a method for constant drug release through the reduction of surface crystallinity.

References

References
1.
Amass
,
W.
,
Amass
,
A.
, and
Tighe
,
B.
,
2008
, “
A Review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies
.”
Polym. Int.
,
47
, pp.
89
144
.10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
2.
Lao
,
L. L.
,
Venkatraman
,
S. S.
, and
Peppas
,
N. A.
,
2009
, “
A Novel Model and Experimental Analysis of Hydrophilic and Hydrophobic Agent Release From Biodegradable Polymers
,”
J. Biomed. Mater. Res. A
,
90
,
1054
1065
.10.1002/jbm.a.32171
3.
Chu
,
C. C.
,
1981
, “
Hydrolytic Degradation of Polyglycolic Acid: Tensile Strength and Crystallinity Study
,”
J. Appl. Polym. Sci.
,
26
, pp.
1727
1734
.10.1002/app.1981.070260527
4.
Tsuji
,
H.
, and
Ikada
,
Y.
,
1998
, “
Properties and Morphology of Poly(L-Lactide). II. Hydrolysis in Alkaline Solution
,”
J. Polym. Sci. A: Polym. Chem.
,
36
, pp.
59
66
.10.1002/(SICI)1099-0518(19980115)36:1<59::AID-POLA9>3.0.CO;2-X
5.
Siparsky
,
G. L.
,
Voorhees
,
K. J.
, and
Miao
,
F.
,
1998
, “
Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis
,”
J. Environ. Polym. Degrad.
,
6
, pp.
31
41
.10.1023/A:1022826528673
6.
Zong
,
X. H.
,
Wang
,
Z. G.
,
Hsiao
,
B. S.
,
Chu
,
B.
,
Zhou
,
J. J.
, and
Jamiolkowski
,
D. D.
,
1999
, “
Structure and Morphology Changes in Absorbable Poly(Glycolide) and Poly(Glycolide-co-Lactide) During in Vitro Degradation
,”
Macromolecules
,
32
, pp.
8107
8114
.10.1021/ma990630p
7.
Renouf-Glausera
,
A. C.
,
Roseb
,
J.
,
Farrarb
,
D. F.
, and
Cameron
,
R. E.
,
2005
, “
The Effect of Crystallinity on the Deformation Mechanism and Bulk Mechanical Properties of PLLA
,”
Biomaterials
,
26
, pp.
5771
5782
.10.1016/j.biomaterials.2005.03.002
8.
Bhatla
,
A.
, and
Yao
,
Y. L.
,
2009
, “
Effect of Laser Surface Modification on the Crystallinity of Poly(L-Lactic Acid)
,”
ASME J. Manuf. Sci. Eng.
,
131
,
051004
.10.1115/1.3039519
9.
Dunn
,
D. S.
, and
Ouderkirk
,
A. J.
,
1990
, “
Chemical and Physical Properties of Laser-Modified Polymers
,”
Macromolecules
,
23
, pp.
770
774
.10.1021/ma00205a013
10.
Hsu
,
S.-T.
,
Tan
,
H.
, and
Yao
,
Y. L.
,
2012
, “
Effect of Excimer Laser Irradiation on Crystallinity and Chemical Bonding of Biodegradable Polymer
,”
Polym. Degrad. Stab.
,
97
, pp.
88
97
.10.1016/j.polymdegradstab.2011.10.006
11.
Weir
,
N. A.
,
Buchanan
,
F. J.
,
Orr
,
J. F.
,
Farrar
,
D. F.
, and
Dickson
,
G. R.
,
2004
, “
Degradation of Poly-L-Lactide. Part 2: Increased Temperature Accelerated Degradation
,”
Proc. Inst. Mech. Eng., Part. H: J. Eng. Med.
,
218
, pp.
321
330
.10.1243/0954411041932809
12.
Yamamoto
,
T.
,
2010
, “
Molecular Dynamics of Reversible and Irreversible Melting in Chain-Folded Crystals of Short Polyethylene-Like Polymer
,”
Macromolecules
,
43
, pp.
9384
9393
.10.1021/ma101777d
13.
Pitt
,
C. G.
, and
Gu
,
Z.
,
1987
, “
Modification of the Rates of Chain Cleavage of Poly(ε-Caprolactone) and Related Polyesters in the Solid State
,”
J. Controlled Release
,
4
, pp.
283
292
.10.1016/0168-3659(87)90020-4
14.
Li
,
S. M.
,
Garreau
,
H.
, and
Vert
,
M.
,
1990
, “
Structure-Property Relationships in the Case of the Degradation of Massive Poly(α-Hydroxy Acids) in Aqueous Media: Part 2 Degradation of Lactide-Glycolide Copolymers: PLA37.5GA25 and PLA75GA25
,”
J. Mater. Sci.: Mater. Med.
,
1
, pp.
131
139
.10.1007/BF00700872
15.
Lyu
,
S.
,
Schley
,
J.
,
Loy
,
B.
,
Lind
,
D.
,
Hobot
,
C.
,
Sparer
,
R.
, and
Untereker
,
D.
,
2007
, “
Kinetics and Time-Temperature Equivalence of Polymer Degradation
,”
Biomacromolecules
,
8
, pp.
2301
2310
.10.1021/bm070313n
16.
Wang
,
Y.
,
Pan
,
J.
,
Han
,
X.
,
Sinka
,
C.
, and
Ding
,
L.
,
2008
, “
A Phenomenological Model for the Degradation of Biodegradable Polymers
,”
Biomaterials
,
29
, pp.
3393
3401
.10.1016/j.biomaterials.2008.04.042
17.
Stephens
,
C. H.
,
Whitmore
,
P. M.
,
Morris
,
H. R.
, and
Bier
,
M. E.
,
2008
, “
Hydrolysis of the Amorphous Cellulose in Cotton-Based Paper
,”
Biomacromolecules
,
9
, pp.
1093
1099
.10.1021/bm800049w
18.
Tsuji
,
H.
, and
Tsuruno
,
T.
,
2010
, “
Accelerated Hydrolytic Degradation of Poly(L-Lactide)/Poly(D-Lactide) Stereocomplex up to Late Stage
,”
Polym. Degrad. Stab.
,
95
, pp.
477
484
.10.1016/j.polymdegradstab.2010.01.008
19.
Tsuji
,
H.
, and
Ikarashi
,
K.
,
2004
, “
In Vitro Hydrolysis of Poly(L-Lactide) Crystalline Residues as Extended-Chain Crystallites: II. Effects of Hydrolysis Temperature
,”
Biomacromolecules
,
5
, pp.
1021
1028
.10.1021/bm034523l
20.
Fischer
,
E. W.
,
Sterzel
,
H. J.
, and
Wegner
,
G.
,
1973
, “
Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions
,”
Kolloid Z. Z. Polym.
,
251
, pp.
980
990
.10.1007/BF01498927
21.
Toda
,
A.
,
Tomita
,
C.
,
Hikosaka
,
M.
, and
Saruyama
,
Y.
,
1998
, “
Melting of Polymer Crystals Observed by Temperature Modulated D.S.C. and Its Kinetic Modeling
,”
Polymer
,
39
, pp.
5093
5104
.10.1016/S0032-3861(97)10075-1
22.
Li
,
S.
, and
McCarthy
,
S.
,
1999
, “
Influence of Crystallinity and Stereochemistry on the Enzymatic Degradation of Poly(lactide)s
,”
Macromolecules
,
32
, pp.
4454
4456
.10.1021/ma990117b
23.
Avrami
,
M.
,
1941
, “
Granulation, Phase Change, and Microstructure: Kinetics of Phase Change. III
,”
J. Chem. Phys.
,
9
, pp.
177
184
.10.1063/1.1750872
24.
Alexander
,
L. E.
,
1969
,
X-Ray Diffraction Methods in Polymer Science
,
Wiley
,
New York
, Chap. 1.
25.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change. I: General Theory
,”
J. Chem. Phys.
,
7
, pp.
1103
1112
.10.1063/1.1750380
26.
Menczel
,
J.
, and
Wunderlich
,
B.
,
1981
, “
Heat Capacity Hysteresis of Semicrystalline Macromolecular Glasses
,”
J. Polym. Sci.: Polym. Lett. Ed.
,
19
, pp.
261
264
.10.1002/pol.1981.130190506
27.
Belyayev
,
O. F.
,
1988
, “
Mechanism of Melting of Oriented Polymers
,”
Polym. Sci. U.S.S.R.
,
30
, pp.
2545
2552
.10.1016/0032-3950(88)90024-X
28.
Lam
,
C. X. F.
,
Savalani
,
M. M.
,
Teoh
,
S. H.
, and
Hutmacher
,
D. W.
,
2008
, “
Dynamics of in Vitro Polymer Degradation of Polycaprolactone-Based Scaffolds: Accelerated Versus Simulated Physiological Conditions
,”
Biomed. Mater.
,
3
,
034108
.10.1088/1748-6041/3/3/034108
29.
Breitenbach
,
J.
, and
Lewis
,
J.
,
2003
,
Modified-Release Drug Delivery Technology
,
M. J.
Rathbone
,
J.
Hadgraft
, and
M. S.
Roberts
, eds.,
Marcel Dekker
,
New York
, Chap. 11.
You do not currently have access to this content.