The frequency response function (FRF) method has been well used to determine the worst spindle speeds and their critical limiting chip width for turning operation by finding the maximum negative real part of the FRF. In this study, a modified FRF concept is adapted for a 2 DOF milling system of planar isotropic dynamics to determine the worst spindle speeds and the critical limiting axial depth of cut in explicit, analytic formulas. Analogous to the formulation of worst spindle speeds, similar expression for the best spindle speeds is also obtained. The modified FRF is obtained by multiplying the original FRF of the structure with a complex scaling factor, corresponding to a scaling and a rotation of its original Nyquist plot. The scaling factor is determined analytically from the system characteristic equation with the radial cutting constant and radial immersion angle as the major system parameters. Through the presented method, it is also shown that the worst spindle speeds for a milling operation can be found without the prior knowledge of modal dynamics and stability lobe diagram. The proposed analytical expressions are confirmed by the existing stability models and experimentally verified.

References

References
1.
Smith
,
S.
, and
Tlusty
,
J.
,
1992
, “
Stabilizing Chatter by Automatic Spindle Speed Regulation
,”
Ann. CIRP
,
41
(
1
), pp.
433
436
.10.1016/S0007-8506(07)61238-4
2.
Tarng
,
Y. S.
, and
Li
,
T. C.
,
1994
, “
The Change of Spindle Speed for Avoidance of Chatter in End Milling
,”
Int. J. Mater. Process. Technol.
,
41
, pp.
227
236
.10.1016/0924-0136(94)90063-9
3.
Liao
,
Y. S.
, and
Young
,
Y. C.
,
1996
, “
A New On-Line Spindle Speed Regulation Strategy for Chatter Control
,”
Int. J. Mach. Tools Manuf.
,
36
(
5
), pp.
651
660
.10.1016/0890-6955(95)00076-3
4.
Bediaga
,
I.
,
Munõa
,
J.
,
Hernández
, and
López de Lacalle
,
L. N.
,
2009
, “
Automatic Spindle Speed Selection Strategy to Obtain Stability in High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
384
394
.10.1016/j.ijmachtools.2008.12.003
5.
Tobias
,
S. A.
, and
Fiswick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
The Engineer
,
205
, pp. 199–203.
6.
Smith
,
K. S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
, pp.
169
175
.10.1115/1.2899674
7.
Lee
,
A. C.
, and
Liu
,
C. S.
,
1991
, “
Analysis of Chatter Vibration in the End Milling Process
,”
Int. J. Mach. Tools Manuf.
,
31
(
4
), pp.
471
479
.10.1016/0890-6955(91)90030-7
8.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.10.1002/nme.1061
9.
Biermann
,
D.
,
Kersting
,
P.
, and
Surmann
,
T.
,
2010
, “
A General Approach to Simulating Workpiece Vibrations During Five-Axis Milling of Turbine Blades
,”
CIRP Ann.
,
59
, pp.
125
128
.10.1016/j.cirp.2010.03.057
10.
Afazov
,
S. M.
,
Ratchev
,
S. M.
,
Segal
,
J.
, and
Popov
,
A. A.
,
2012
, “
Chatter Modeling in Micro-Milling by Considering Process Nonlinearities
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
28
38
.10.1016/j.ijmachtools.2011.12.010
11.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
, p.
031005
.10.1115/1.4004136
12.
Tlusty
,
J.
,
Zaton
,
W.
, and
Ismail
,
F.
,
1983
, “
Stability Lobes in Milling
,”
CIRP Ann.
,
32
(
1
), pp.
309
313
.10.1016/S0007-8506(07)63411-8
13.
Tlusty
,
J.
,
2000
,
Manufacturing Processes and Equipment
,
Prentice Hall
,
Upper Saddle River, NJ
.
14.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics
,
Springer Publishing Co.
,
New York
.
15.
Minis
, I
.
, and
Yanushevsky
,
T.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
ASME J. Eng. Ind.
,
18
, pp.
1
8
.10.1115/1.2901633
16.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
, pp.
357
362
.10.1016/S0007-8506(07)62342-7
17.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
An Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
, pp.
22
30
.10.1115/1.2801317
18.
Wang
,
J.-J.
,
Zheng
,
C. M.
, and
Huang
,
C. Y.
,
2003
,
The Effect of Harmonic Force Components on Regenerative Stability in End Milling
,
ASME IMECE
,
Washington, D.C
.
19.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
, pp.
217
225
.10.1115/1.1455030
20.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2001
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
220
225
.10.1115/1.1556860
21.
Insperger
,
T.
,
Stepan
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
.10.1016/S0022-460X(02)01131-8
22.
Altintas
,
Y.
,
Stepan
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
, pp.
35
44
.10.1016/j.cirpj.2008.06.003
23.
Wang
,
J.-J.
,
Liang
,
S. Y.
, and
Book
,
W. J.
,
1994
, “
Convolution Analysis of Milling Force Pulsation
,”
ASME J. Eng. Ind.
,
116
, pp.
17
25
.10.1115/1.2901804
You do not currently have access to this content.