Micro-electro-discharge machining (micro-EDM) is a well-established micromanufacturing process and has been at the center of research for the last few decades. However, it has its own limitations. The limitations are primarily due to the requirement of a tool and electric potential between the tool and the workpiece. The laser induced plasma micromachining (LIP-MM) is a novel tool-less multimaterial selective material removal type of micromachining process. In a manner similar to micro-EDM, it also removes material through plasma-matter interaction. However, instead of a tool and electric potential, it uses an ultra-short laser beam to generate plasma within a transparent dielectric media and thus circumvents some of the limitations associated with micro-EDM. The paper presents an experimental investigation on the comparative assessment of the capabilities of the two processes in the machining of microchannels in stainless steel. For comparative assessment of their processing capabilities, microchannels were machined by the two processes at similar pulse energy levels, while other process parameters were maintained at their optimal values for their respective process technology requirements. The comparative assessment was based on the geometric characteristics, material removal rate (MRR), effect of tool wear, and the range of machinable materials.

References

References
1.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M. L.
,
Hodgson
,
T. J.
,
Kurfess
,
T. R.
,
Madou
,
M.
,
Rajurkar
,
K.
, and
Devor
,
R.
,
2007
,
Micromanufacturing: International Assessment of Research and Development
,
Springer
, Dordrecht, The Netherlands.
2.
Ehmann
,
K. F.
,
2007
, “
A Synopsis of U.S. Micro-Manufacturing Research and Development Activities and Trends
,”
Borovets, Bulgaria
, pp.
7
13
.
3.
Mccarthy
,
C. T.
,
Hussey
,
M.
, and
Gilchrist
,
M. D.
,
2007
, “
On the Sharpness of Straight Edge Blades in Cutting Soft Solids: Part I—Indentation Experiments
,”
Eng. Fract. Mech.
,
74
(
14
), pp.
2205
2224
.10.1016/j.engfracmech.2006.10.015
4.
Pham
,
D. T.
,
Dimov
,
S. S.
,
Bigot
,
S.
,
Ivanov
,
A.
, and
Popov
,
K.
,
2004
, “
Micro-Edm–Recent Developments and Research Issues
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
50
57
.10.1016/j.jmatprotec.2004.02.008
5.
Ho
,
K. H.
, and
Newman
,
S. T.
,
2003
, “
State of the Art Electrical Discharge Machining (Edm)
,”
Int. J. Mach. Tools Manuf.
,
43
(
13
), pp.
1287
1300
.
10.1016/S0890-6955(03)00162-7
6.
Dibitonto
,
D. D.
,
Eubank
,
P. T.
,
Patel
,
M. R.
, and
Barrufet
,
M. A.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process. I. A Simple Cathode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), pp.
4095
4103
.10.1063/1.343994
7.
Katz
,
Z.
, and
Tibbles
,
C. J.
,
2005
, “
Analysis of Micro-Scale Edm Process
,”
Int. J. Adv. Manuf. Technol.
25
(
9
), pp.
923
928
.10.1007/s00170-003-2007-1
8.
Karthikeyan
,
G.
,
Ramkumar
,
J.
,
Dhamodaran
,
S.
, and
Aravindan
,
S.
,
2010
, “
Micro Electric Discharge Milling Process Performance: An Experimental Investigation
,”
Int. J. Mach. Tools Manuf.
,
50
(
8
), pp.
718
727
.10.1016/j.ijmachtools.2010.04.007
9.
Nagahanumaiah
,
R. J.
,
Glumac
,
N.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2009
, “
Characterization of Plasma in Micro-Edm Discharge Using Optical Spectroscopy
,”
J. Manuf. Process.
,
11
(
2
), pp.
82
87
.10.1016/j.jmapro.2009.10.002
10.
Das
,
S.
,
Klotz
,
M.
, and
Klocke
,
F.
,
2003
, “
Edm Simulation: Finite Element-Based Calculation of Deformation, Microstructure and Residual Stresses
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
434
451
.10.1016/S0924-0136(03)00624-1
11.
Bleys
,
P.
,
Kruth
,
J. P.
,
Lauwers
,
B.
,
Zryd
,
A.
,
Delpretti
,
R.
, and
Tricarico
,
C.
,
2002
, “
Real-Time Tool Wear Compensation in Milling Edm
,”
CIRP Ann.
51
(
1
), pp.
157
160
.10.1016/S0007-8506(07)61489-9
12.
Roy
,
S.
,
Nagahanumaiah, Roy
,
H.
, and
Ghosh
,
D.
,
2009
, “
Characterization of Debris Produced in Μ-Edm Process
,” 6th International Conference on Multi-Material Micro Manufacture, Forschungszentrum Karlsruhe, Germany, September 23–25.
13.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
,
Feasibility of Laser Induced Plasma Micro-Machining (Lip-Mm)
,
Springer
,
New York
.
14.
Vogel
,
A.
,
Noack
,
J.
,
Nahen
,
K.
,
Theisen
,
D.
,
Busch
,
S.
,
Parlitz
,
U.
,
Hammer
,
D. X.
,
Noojin
,
G. D.
,
Rockwell
,
B. A.
, and
Birngruber
,
R.
,
1999
, “
Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales
,”
Appl. Phys. B
,
68
(
2
), pp.
271
280
.10.1007/s003400050617
15.
Sacchi
,
C. A.
,
1991
, “
Laser-Induced Electric Breakdown in Water
,”
J. Opt. Soc. Am. B
,
8
(
2
), pp.
337
345
.10.1364/JOSAB.8.000337
16.
Noack
,
J.
, and
Vogel
,
A.
,
1999
, “
Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,”
IEEE J. Quantum Electron.
35
(
8
), pp.
1156
1167
.10.1109/3.777215
17.
Vogel
,
A.
,
Nahen
,
K.
,
Theisen
,
D.
, and
Noack
,
J.
,
1996
, “
Plasma Formation in Water by Picosecond and Nanosecond Nd:Yag Laser Pulses. I. Optical Breakdown at Threshold and Superthreshold Irradiance
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
(
4
), pp.
847
860
.10.1109/2944.577307
18.
Lim
,
L. C.
,
Lee
,
L. C.
,
Wong
,
Y. S.
, and
Lu
,
H.
H
.
,
1991
, “
Solidification Microstructure of Electrodischarge Machined Surfaces of Tool Steels
,”
Mater. Sci. Technol.
,
7
, pp.
239
248
.10.1179/026708391790183411
19.
Rebelo
,
J. C.
,
Morao Dias
,
A.
,
Kremer
,
D.
, and
Lebrun
,
J. L.
,
1998
, “
Influence of Edm Pulse Energy on the Surface Integrity of Martensitic Steels
,”
J. Mater. Process. Technol.
,
84
(
1–3
), pp.
90
96
.10.1016/S0924-0136(98)00082-X
20.
Michalski
,
L.
,
Eckersdorf
,
K.
,
Kucharski
,
J.
, and
Mcghee
,
J.
,
2002
,
Temperature Measurement
,
John Wiley & Sons, Ltd
, Chichester, UK.
You do not currently have access to this content.