This paper reports the effect of laser power density on the evolving properties of laser metal deposited titanium alloy. A total of sixteen experiments were performed, and the microstructure, microhardness and surface roughness of the samples were studied using the optical microscope (OP), microhardness indenter and stylus surface analyzer, respectively. The microstructure changed from finer martensitic alpha grain to coarser Widmastätten alpha grain structure as the laser power density was increased. The results show that the higher the laser power density employed, the smoother the obtained surface. The microhardness initially increased as the laser power density was increased and then decreased as the power density was further increased. The result obtained in this study is important for the selection of proper laser power density for the desired microstructure, microhardness and surface finish of part made from Ti6Al4V.

References

References
1.
Toyserkani
,
E.
, and
Khajepour
,
A.
,
2006
, “
A Mechatronics Approach to Laser Powder Deposition Process
,”
Mechatronics
,
16
(
10
), pp.
631
641
.10.1016/j.mechatronics.2006.05.002
2.
Scott
J.
,
Gupta
N.
,
Wember
C.
,
Newsom
S.
,
Wohlers
T.
, and
Caffrey
T.
,
2012
, “
Additive Manufacturing: Status and Opportunities
,” Science and Technology Policy Institute, Retrieved 11th March 2013, from https://www.ida.org/stpi/occasionalpapers/papers/AM3D_33012_Final.pdf
3.
Mahamood
M. R.
,
Akinlabi
E. T.
,
Shukla
M.
, and
Pityana
S.
,
2012
, “
Effect of Laser Power on Material Efficiency, Layer Height and Width of Laser Metal Deposited Ti6Al4V
,”
Proceedings of the World Congress on Engineering and Computer Science 2012
, Vol. II, WCECS 2012, Oct. 24–26,
San Francisco
, pp.
1433
1438
.
4.
Yamashita
,
K.
,
Taniguchi
,
H.
,
Yuyama
,
S.
,
Oe
,
K.
,
Sun
,
J.
, and
Mataki
,
H.
,
2007
, “
Continuous-Wave Stimulated Emission and Optical Amplification in Europium (III)-Aluminum Nanocluster-Doped Polymeric Waveguide
,”
Appl. Phys. Lett.
,
91
(
8
), pp.
081115
081118
.10.1063/1.2773933
5.
Thivillon
,
L.
,
Bertrand
,
Ph.
,
Laget
,
B.
, and
Smurov
,
I.
,
2009
, “
Potential of Direct Metal Deposition Technology for Manufacturing Thickfunctionally Graded Coatings and Parts for Reactors Components
,”
J. Nucl. Mater.
,
385
, pp.
236
241
.10.1016/j.jnucmat.2008.11.023
6.
Wang
,
F.
,
Mei
,
J.
, and
Wu
,
X.
,
2007
, “
Compositionally Graded Ti6Al4V + TiC Made by Direct Laser Fabrication Using Powder and Wire
,”
Mater. Des.
,
28
(
7
), pp.
2040
2046
.10.1016/j.matdes.2006.06.010
7.
Bergan
,
P.
,
2000
, “
Implementation of Laser Repair Processes for Navy Aluminum Components
,”
Proceeding of Diminishing Manufacturing Sources and Material Shortages Conference, 2000 (DMSMS)
, last accessed on March 17, 2013, http://smaplab.ri.uah.edu/Smaptest/Conferences/dmsms2K/papers/decamp.pdf
8.
Brandl
,
E.
,
Schoberth
A.
, and
Leyens
,
C.
,
2012
, “
Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feedadditive Layer Manufacturing (ALM)
,”
Mater. Sci. Eng. A
,
532
, pp.
295
307
.10.1016/j.msea.2011.10.095
9.
Peters
,
M.
,
Kumpfert
,
J.
,
Ward
,
C. H.
, and
Leyens
,
C.
,
2003
, “
Titanium Alloys for Aerospace Applications, in Titanium and Titanium Alloys
,”
Adv. Eng. Mater.
,
5
, pp.
419
427
.10.1002/adem.200310095
10.
Lu
,
Y.
,
Tang
,
H. B.
,
Fang
,
Y. L.
,
Liu
,
D.
, and
Wang
,
H. M.
,
2012
, “
Microstructure Evolution of Sub-Critical Annealed Laser Deposited Ti–6Al–4V Alloy
,”
Mater. Des.
,
37
, pp.
56
63
.10.1016/j.matdes.2011.12.016
11.
Machado
A. R.
, and
Wallbank
J.
,
2005
, “
Machining of Titanium and Its Alloys: A Review
,”
Proc. Inst. Mech. Eng. Part B
,
204
(
11
), pp.
53
60
.10.1243/PIME_PROC_1990_204_047_02
12.
Sammons
P. M.
,
Bristow
D. A.
, and
Landers
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,”
135
(
5
), p.
054501
.10.1115/1.4025061
13.
Brandl
,
E.
,
Michailov
,
V.
,
Viehweger
,
B.
, and
Leyens
,
C.
,
2011
Deposition of Ti–6Al–4V Using Laser and Wire, Part I: Microstructural Properties of Single Beads
,”
Surf. Coat. Technol.
,
206
(
6
), pp.
1120
1129
.10.1016/j.surfcoat.2011.07.095
14.
Kobryn
,
P.
, and
Semiatin
,
S. L.
,
2000
, “
Laser Forming of Ti–6Al–4V: Research Overview
,”
D.
Bourell
,
J.
Beaman
,
R.
Crawford
,
J.
Marcus
, and
J.
Barlow
, eds.,
Solid Freeform Fabrication Proceedings
,
University of Texas
,
Austin, TX
, pp.
58
65
.
15.
Senthilkumaran
,
K.
,
Pandey
,
P. M.
, and
Rao
,
P. V. M.
,
2009
, “
Influence of Building Strategies on the Accuracy of Parts in Selective Laser Sintering
,”
Mater. Des.
,
30
(
8
), pp.
2946
2954
.10.1016/j.matdes.2009.01.009
16.
British Standards Institute
,
1998
, “GPS—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture,” BS EN ISO 4288.
17.
Taylor
,
B.
, and
Weidmann
,
E.
,
2008
, “
Metallographic Preparation of Titanium
,” Struers Application Notes, last accessed on Jan. 24, 2013, http://www.struers.com/resources/elements/12/104827/Application_Note_Titanium_English.pdf
18.
ASTM
,
2011
, “Standard Test Method for Knoop and Vickers Hardness of Materials,” ASTM E384—11e1.
19.
Mahamood
,
M. R.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013
, “
Scanning Velocity Influence on Microstructure, Microhardness and Wear Resistance Performance on Laser Deposited Ti6Al4V/TiC Composite
,”
Mater. Des.
,
50
, pp.
656
666
.10.1016/j.matdes.2013.03.049
20.
Wu
,
X.
,
Liang
,
J.
,
Mei
,
J.
,
Mitchell
,
C.
,
Goodwin
,
P. S.
, and
Voice
,
W.
,
2004
, “
Microstructures of Laser-Deposited Ti–6Al–4V
,”
Mater. Des.
,
25
(
2
), pp.
137
144
.10.1016/j.matdes.2003.09.009
You do not currently have access to this content.