Nanoimprint lithography (NIL) is a promising nanomanufacturing technology that offers an alternative to traditional photolithography for manufacturing next-generation semiconductor devices. This technology involves coating an ultraviolet (UV)-curable monomer layer on the substrate and then imprinting it with a template containing topography corresponding to the desired substrate features. While the template is close to contact with the substrate, the monomer is cured by UV exposure. This results in definition of desired features on the substrate. While NIL has the potential of defining very small feature sizes, thermal management of this process is critical for ensuring accuracy. Heat generation in the monomer layer due to UV absorption needs to be managed and dissipated in order to avoid thermal expansion mismatch and consequent misalignment between the template and wafer. In addition, thermal dissipation must occur in a timeframe that does not adversely affect the required lithography throughout. This paper develops a numerical simulation model of the nanoimprinting process and utilizes the model to study the effect of various geometrical parameters on the accuracy and throughput of the process. The effect of the UV power characteristics on heat dissipation and consequently on misalignment due to thermal expansion is studied. Results indicate that the thermal expansion mismatch due to commonly used UV exposure parameters may be minimized by utilizing a lower exposure power for longer time. A transient model enables a study of the effect of die imprint sequencing on the overall temperature rise during the process. Results indicate a critical trade-off between minimizing temperature rise on one hand, and maximizing system-level throughput on the other. By identifying and quantifying this trade-off, this work contributes to development of error-free nanoimprint lithography for future technology nodes.

References

1.
Chou
,
S. Y.
,
Krauss
,
P. R.
, and
Renstrom
,
P. J.
,
1996
, “
Imprint Lithography With 25-Nanometer Resolution
,”
Science
,
272
, pp.
85
87
.10.1126/science.272.5258.85
2.
Gates
,
B. D.
,
Xu
,
Q.
,
Stewart
,
M.
,
Ryan
,
D.
,
Willson
,
C. G.
, and
Whitesides
,
G. M.
,
2005
, “
New Approaches to Nanofabrication: Molding, Printing, and Other Techniques
,”
Chem. Rev.
,
105
(
4
), pp
1171
1196
.10.1021/cr030076o
3.
Resnick
,
D.
,
Dauksher
,
W. J.
,
Mancini
,
D.
,
Nordquist
,
K. J.
,
Bailey
,
T. C.
,
Johnson
,
S.
,
Stacey
,
N.
,
Ekerdt
,
J. G.
,
Willson
,
C. G.
,
Sreenivasan
,
S.
V.
, and
Schumaker
,
N.
,
2003
, “
Imprint Lithography for Integrated Circuit Fabrication
,”
J. Vac. Sci. Technol. B
,
21
, pp.
2624
2631
.10.1116/1.1618238
4.
Ahn
,
S. H.
, and
Guo
,
L. J.
,
2009
, “
Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step Toward High-Throughput Application of Continuous Nanoimprinting
,”
ACS Nano
,
3
(
8
), pp.
2304
2310
.10.1021/nn9003633
5.
Costner
,
E. A.
,
Lin
,
M. W.
,
Jen
,
W.-L.
, and
Willson
,
C. G.
,
2009
, “
Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication
,”
Annu. Rev. Mater. Res.
,
39
, pp.
155
180
.10.1146/annurev-matsci-082908-145336
6.
Houle
,
F. A.
,
Guyer
,
E.
,
Miller
,
D. C.
, and
Dauskardt
,
R.
,
2007
, “
Adhesion Between Template Materials and UV-Cured Nanoimprint Resists
,”
J. Vac. Sci. Technol. B
,
25
(
4
), pp.
1179
1185
.10.1116/1.2746336
7.
Austin
,
M. D.
,
Zhang
,
W.
,
Ge
,
H.
,
Wasserman
,
D.
, and
Chou
,
S. Y.
,
2005
, “
6 nm Half-Pitch Lines and 0.04 μm2 Static Random Access Memory Patterns by Nanoimprint Lithography
,”
Nanotechnology
,
16
, pp.
1058
1061
.10.1088/0957-4484/16/8/010
8.
Cheyns
,
D.
,
Vasseur
,
K.
,
Rolin
,
C.
,
Genoe
,
J.
,
Poortmans
,
J.
, and
Heremans
,
P.
,
2008
, “
Nanoimprinted Semiconducting Polymer Films With 50 nm Features and Their Application to Organic Heterojunction Solar Cells
,”
Nanotechnology
,
19
, p. 424016.10.1088/0957-4484/19/42/424016
9.
Hong
,
S.-H.
,
Hwang
,
J.-Y.
,
Lee.
,
H.
,
Lee
,
H.-C.
, and
Choi
,
K.-W.
,
2009
, “
UV Nanoimprint Using Flexible Polymer Template and Substrate
,”
Microelectron. Eng.
,
86
(
3
), pp.
295
298
.10.1016/j.mee.2008.09.044
10.
Lan
,
H.
, and
Liu
,
H.
,
2013
, “
UV-Nanoimprint Lithography: Structure, Materials and Fabrication of Flexible Molds
,”
J. Nanosci. Nanotechnol.
,
13
(
5
), pp.
3145
3172
.10.1166/jnn.2013.7437
11.
Ro
,
H. W.
,
Ding
,
Y.
,
Lee
,
H.-J.
,
Hines
,
D. R.
,
Jones
,
R. L.
,
Lin
,
E. K.
,
Karim
,
A.
,
Wu
,
W.-L.
, and
Soles
,
C. L.
,
2006
, “
Evidence for Internal Stresses Induced by Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
,
24
, pp.
2973
2978
.10.1116/1.2387157
12.
Chidambaram
,
P. R.
,
Bowen
,
C.
,
Chakravarthi
,
S.
,
Machala
,
C.
, and
Wise
,
R.
,
2006
, “
Fundamentals of Silicon Material Properties for Successful Exploitation of Strain Engineering in Modern CMOS Manufacturing
,”
IEEE Trans. Electron. Dev.
,
53
(
5
), pp.
944
964
.10.1109/TED.2006.872912
13.
Kim
,
E. K.
, and
Willson
,
C. G.
,
2006
, “
Thermal Analysis of Step and Flash Imprint Lithography During UV Curing Process
,”
Microelectron. Eng.
,
83
, pp.
213
217
.10.1016/j.mee.2005.08.007
14.
Hsiao
,
F.-B.
,
Wang
,
D.-B.
,
Jen
,
C.-P.
,
Chuang
,
C.-H.
,
Lee
,
Y.-C.
, and
Liu
,
C.-P.
,
2005
, “
Modeling of Heat Transfer for Laser-Assisted Direct Nano Imprint Processing
,”
Proceedings of IEEE International Confernece on Robotics and Biomimetics
.
15.
Chen
,
Y.
,
Tao
,
J.
,
Zhao
,
X.
, and
Cui
,
Z.
,
2006
, “
Study of Pattern Placement Error by Thermal Expansions in Nanoimprint Lithography
,”
J. Microlith., Microfab., Microsyst.
,
5
(
1
), p.
011002
.
16.
Li
,
N.
,
Wu
,
W.
, and
Chou
,
S. Y.
,
2006
, “
Sub-20-nm Alignment in Nanoimprint Lithography Using Moiré Fringe
,”
Nano Lett.
,
6
, pp.
2626
2629
.10.1021/nl0603395
17.
Chappelow
,
C. C.
,
Pinzino
,
C. S.
,
Power
,
M. D.
,
Holder
,
A. J.
,
Morrill
,
J. A.
,
Jeang
,
L.
, and
Eick
,
J. D.
,
2002
, “
Photoreactivity of Vinyl Ether/Oxirane-Based Resin Systems
,”
J. Appl. Polym. Sci.
,
86
, pp.
314
326
.10.1002/app.10961
18.
Lee
,
K.
,
Kim
,
J.
, and
Lee
,
B.
,
2001
, “
Thermal Decomposition Kinetics of an Epoxy Resin With Rubber-Modified Curing Agent
,”
J. Appl. Polym. Sci.
,
81
, pp.
2929
2935
.10.1002/app.1743
19.
Touloukian
,
Y. S.
,
1975
,
Thermophysical Properties of Matter
,
IFI/Plenum
,
New York
.
20.
Jan, C.-H., Bhattacharya, U., Brain, R., Choi, S.-J., Curello, G., Gupta, G., Hafez, W., Jang, M., Kang, M., Komeyli, K., Leo, T., Nidhi, N., Pan, L., Park, J., Phoa, K., Rahman, A., Staus, C., Tashiro, H., Tsai, C., Vandervoorn, P., Yang, L., Yeh, J.-Y., and Bai, P.,
2012
, “
A 22 nm SoC Platform Technology Featuring 3-D Tri-Gate and High-K/Metal Gate, Optimized for Ultra Low Power, High Performance and High Density SoC Applications
,”
Proceedings of IEEE International Electron Device Meeting
.
21.
Ito
,
S.
,
Namba
,
H.
,
Yamaguchi
,
K.
,
Hirata
,
T.
,
Ando
,
K.
,
Koyama
,
S.
,
Kuroki
,
S.
,
Ikezawa
,
N.
,
Suzuki
,
T.
,
Saitoh
,
T.
, and
Horiuchi
,
T.
,
2002
, “
Mechanical Stress Effect of Etch-Stop Nitride and Its Impact on Deep Submicron Transistor Design
,”
Proceedings of IEEE Electron Device Meeting
.
22.
Sarrafzadeh
,
M.
, and
Wong
,
C. K.
,
1996
, “
An Introduction to VLSI Design
,”
McGraw-Hill
,
New York
.
23.
Lu
,
K. N.
,
Zhang
,
X.
,
Ryu
,
S.-K.
,
Im
,
J.
,
Huang
,
R.
, and
Ho
,
P. S.
,
2009
, “
Thermo-Mechanical Reliability of 3D ICs Containing Through-Silicon Vias
,”
Proceedings of IEEE Electronic. Components and Technology Conference
.
You do not currently have access to this content.