Extensive experimental work has shown that pulsed laser micro polishing (PLμP) is effective for polishing micro metallic parts. However, the process physics have not been fully understood yet, especially with respect to the melt pool flow. A reliable physical model can be of significant assistance in understanding the fluid flow in the melt pool and its effect on PLμP. In this paper, a two-dimensional axisymmetric transient model that couples heat transfer and fluid flow is described that was constructed using the finite element method. The model not only provided the solutions to the temperature and velocity fields but also predicted the surface profile evolution on a free deformable surface. The simulated melt depth and resolidified surface profiles matched those obtained from optical images of PLμPed Ti6Al4V sample cross-sections. The model was also used to study the effect of laser pulse duration on the melt pool flow. The study suggests that longer pulses produce more significant fluid flows. The cut-off pulse duration between capillary and thermocapillary regimes, below which minimal Maragoni flow should be expected, was estimated to be 0.66 μs for Ti6Al4V, which also matched well with the experimental results. It is evident that the coupled model offers reliable predictions and thus can be extended for a more complex parametric study to provide further insights for PLμP.

References

1.
Mai
,
T. A.
, and
Lim
,
G. C.
,
2004
, “
Micromelting and Its Effects on Surface Topography and Properties in Laser Polishing of Stainless Steel
,”
J. Laser Appl.
,
16
, pp.
221
228
.10.2351/1.1809637
2.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2009
, “
The Effect of Laser Pulse Width and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples
,”
ASME J. Manuf. Sci. Eng.
,
131
, p.
031002
10.1115/1.3106033.
3.
Nüsser
,
C.
,
Wehrmann
, I
.
, and
Willenborg
,
E.
,
2011
, “
Influence of Intensity Distribution and Pulse Duration on Laser Micro Polishing
,”
Phys. Proc.
,
12
, pp.
462
471
.10.1016/j.phpro.2011.03.057
4.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2009
, “
Examination of Selective Pulsed Laser Micro Polishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
, p.
021002
.10.1115/1.3075874
5.
Bereznai
,
M.
,
Pelsöczi
, I
.
,
Tóth
,
Z.
,
Turzó
,
K.
,
Radnai
,
M.
,
Bor
,
Z.
, and
Fazekas
,
A.
,
2003
, “
Surface Modifications Induced by ns and Sub-ps Excimer Laser Pulses on Titanium Implant Material
,”
Biomaterials
,
24
, pp.
4197
4203
.10.1016/S0142-9612(03)00318-1
6.
Kim
,
Y. G.
,
Ryu
,
J. K.
,
Kim
,
D. J.
,
Kim
,
H. J.
,
Lee
,
S.
,
Cha
,
B. H.
,
Cha
,
H.
, and
Kim
,
C. J.
,
2004
, “
Microroughness Reduction of Tungsten Films by Laser Polishing Technology With a Line Beam
,”
Jpn. J. Appl. Phys.
,
43
, pp.
1315
1322
.10.1143/JJAP.43.1315
7.
Tokarev
, V
. N.
, and
Kaplan
,
A. F. H.
,
1999
, “
An Analytical Modeling of Time Dependent Pulsed Laser Melting
,”
J. Appl. Phys.
,
86
, pp.
2836
2846
.10.1063/1.371132
8.
Majumdar
,
J. D.
, and
Manna
,
I.
,
2003
, “
Laser Processing of Materials
,”
Sadhana
,
28
, pp.
495
562
.10.1007/BF02706446
9.
Tseng
,
Y.
,
Huang
,
J.
, and
Su
,
W.
,
2009
, “
Fabricating Lensed Fiber Using a Novel Polishing Method
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041016
.10.1115/1.3168441
10.
Marimuthu
,
S. S.
,
Eghlio
,
R. M.
,
Pinkerton
,
A. J.
, and
Li
,
L. L.
,
2013
, “
Coupled Computational Fluid Dynamic and Finite Element Multiphase Modeling of Laser Weld Bead Geometry Formation and Joint Strengths
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011004
.10.1115/1.4023240
11.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2012
, “
Pulsed Laser Micro Polishing: Surface Prediction Model
,”
J. Manuf. Process.
,
14
, pp.
307
315
.10.1016/j.jmapro.2012.03.001
12.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2013
, “
Effect of Temporal Pulse Duration on Laser Micro Polishing using Spatial Gaussian Intensity Distribution
,”
ASME J. Micro Nano-Manuf.
,
1
, p.
011006
.10.1115/1.4023756
13.
Heiple
,
C. R.
, and
Roper
,
J. R.
,
1982
, “
Mechanism for Minor Element Effect on GTA Fusion Zone Geometry
,”
Weld. J.
,
61
, pp.
97-s
102-s
.
14.
Kou
,
S.
, and
Sun
,
D. K.
,
1985
, “
Fluid Flow and Weld Penetration in Stationary Arc Welds
,”
Metall. Mater. Trans. A
,
16
, pp.
203
213
.10.1007/BF02815302
15.
Tsai
,
M. C.
, and
Kou
,
S.
,
1989
, “
Marangoni Convection in Weld Pools With a Free Surface
,”
Int. J. Numer. Methods Fluids
,
9
, pp.
1503
1516
.10.1002/fld.1650091206
16.
Sim
,
B.
, and
Kim
,
W.
,
2005
, “
Melting and Dynamic-surface Deformation in Laser Surface Heating
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1137
1144
.10.1016/j.ijheatmasstransfer.2004.08.032
17.
Rai
,
R.
,
Elmer
,
J. W.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow during Keyhole Mode Laser Welding of Tantalum, Ti-6Al-4V, 304L Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
5753
5766
.10.1088/0022-3727/40/18/037
18.
Mills
,
K. C.
,
2002
,
Recommended Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing Limited
,
Cambridge, UK
.
19.
Smithells
,
C. J.
,
2004
,
Smithells Metals Reference Book
,
Elsevier Butterworth-Heinemann
,
Boston, MA
.
20.
Steen
,
W. M.
,
1998
,
Laser Material Processing
,
Springer-Verlag
,
New York
.
21.
Kwon
,
H.
,
Baek
,
W.
,
Kim
,
M.
,
Shin
,
W.
, and
Yoh
,
J.
,
2012
, “
Temperature-Dependent Absorptance of Painted Aluminum, Stainless Steel 304, and Titanium for 1.07 mm and 10.6 mm Laser Beams
,”
Opt. Lasers Eng.
,
50
, pp.
114
121
.10.1016/j.optlaseng.2011.10.001
22.
Hagen
,
E.
, and
Rubens
,
H.
,
1903
, “
Über die Beziehung des Reflexions und Emissionsvermögens der Metalle zu ihrem elektrischen Leitvermögen
,”
Ann. Phys.
,
4
, pp.
873
901
.10.1002/andp.19033160811
23.
ASME
,
2009
, “
Surface Texture: Surface Roughness, Waviness, and Lay; ASME B46.1-2009 (Revision of ASME B46.1-2002)
,” American Society of Mechanical Engineers, New York.
24.
ISO
,
2011
, “
ISO 16610-21, Geometrical Product Specifications (GPS)—Filtration—Part 21: Linear Profile Filters: Gaussian Filters
,” ISO, Geneva, Switzerland.
You do not currently have access to this content.