This paper presents a novel approach to measure the cutting temperature in process and control it to some extent by using an internally cooled smart cutting tool with a closed internal cooling circuitry. Numerical modeling based on the finite element analysis-computational fluid dynamics (CFD) method is carried out by using ansys and fluent, then the surface temperature distribution of the tool is fitted and the equivalent heat transfer coefficient of the tool surface contacting with cooling fluid is computed. Analytical thermal model of the tool is established based on the lumped parameter method. Theoretical analysis and numerical simulation results are in good agreement, which demonstrate that the innovative smart tooling design concept can effectively sense the cutting temperature at the cutting tool tip in process and also be used to reduce and control the critical cutting temperature in cutting zone for adaptive machining of difficult-to-machine materials, such as titanium and Inconel alloys. Experimental cutting trials are carried out to further examine and validate the method and concept of applying the smart cutting tool system.

References

1.
Sharma
,
V. S.
,
Dogra
,
M.
, and
Suri
,
N. M.
,
2009
, “
Cooling Techniques for Improved Productivity in Turning
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
435
453
.10.1016/j.ijmachtools.2008.12.010
2.
Vicentin
,
G. C.
,
Sanchez
,
L. E. A.
, and
Scalon
,
V. L.
,
2011
, “
A Sustainable Alternative for Cooling the Machining Processes Using a Refrigerant Fluid in Recirculation Inside the Toolholder
,”
Clean Technol. Environ. Policy
,
13
, pp.
831
840
.10.1007/s10098-011-0359-z
3.
Sun
,
X.
,
Bateman
,
R.
,
Cheng
,
K.
, and
Ghani
,
S. C.
,
2012
, “
Design and Analysis of an Internally Cooled Smart Cutting Tool for Dry Cutting
,”
J. Eng. Manuf.
,
226
(
4
), pp.
585
591
.10.1177/0954405411424670
4.
Chiou
,
R. Y.
,
Lin
,
L.
,
Chen
,
J. S. J.
, and
North
,
M. T.
,
2007
, “
Investigation of Dry Machining With Embedded Heat Pipe Cooling by Finite Element Analysis and Experiments
,”
Int. J. Adv. Manuf. Technol.
,
31
, pp.
905
914
.10.1007/s00170-005-0266-8
5.
Obikawa
,
T.
,
Kamata
,
Y.
,
Asano
,
Y.
,
Nakayama
,
K.
, and
Otieno
,
A. W.
,
2008
, “
Micro-Litre Lubrication Machining of Inconel 718
,”
Int. J. Mach. Tools Manuf.
,”
48
, pp.
1605
1612
.10.1016/j.ijmachtools.2008.07.011
6.
Stephenson
,
D. A.
, and
Ali
,
A.
,
1992
, “
Tool Temperatures in Interrupted Metal Cutting
,”
ASME J. Eng. Ind.
,
114
, pp.
127
136
.10.1115/1.2899765
7.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
, pp.
142
148
.10.1016/S0043-1648(96)07255-9
8.
Davies
,
M. A.
,
Ueda
,
T.
,
M'Saoubi
,
R.
,
Mullany
,
B.
, and
Cooke
,
A. L.
,
2007
, “
On the Measurement of Temperature in Material Removal Processes
,”
CIRP Ann.
,
56
(
2
), pp.
581
604
.10.1016/j.cirp.2007.10.009
9.
O'Sullivan
,
D.
, and
Cotterell
,
M.
,
2001
, “
Temperature Measurement in Single Point Turning
,”
J. Mater. Process. Technol.
,
118
, pp.
301
308
.10.1016/S0924-0136(01)00853-6
10.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2007
,
Introduction to Heat Transfer
, 6th ed.,
John Wiley & Sons
,
New York
.
11.
China Petroleum Materials and Equipment Corporation
,
1995
,
Machining Data Handbook
, 1st ed.,
Petroleum Industry Press
,
Beijing, China
.
12.
Friedman
,
M. Y.
, and
Lenz
,
E.
,
1973
, “
Analysis of Temperature Field in Chip
,”
ASME J. Eng. Ind.
,
95
(
1
), pp.
317
320
.10.1115/1.3438129
13.
Bahia
,
S.
,
Nouaria
,
M.
,
Moufkib
,
A.
,
El Mansoric
,
M.
, and
Molinarib
,
A.
,
2012
, “
Hybrid Modeling of Sliding–Sticking Zones at the Tool–Chip Interface Under Dry Machining and Tool Wear Analysis
,”
Wear
,
286–287
, pp.
45
54
.10.1016/j.wear.2011.05.001
14.
Young
,
H.-T.
,
1996
, “
Cutting Temperature Responses to Flank Wear
,”
Wear
,
201
, pp.
117
120
.10.1016/S0043-1648(96)07227-4
You do not currently have access to this content.