The improvement in machinability during thermally assisted turning of the Ti-6Al-4V alloy has been investigated using finite element modeling. A 2D thermally assisted turning model was developed and validated by comparing the simulation results with experimental results. The effect of workpiece temperature on the cutting force and chip formation process was examined. The predicted cutting forces and chip morphologies from the simulation strongly correlated with the experimental results. It was observed from the simulation that the chip forms after the coalescence of two deformed regions in the shear band and that the cyclic cutting forces are strongly related to this chip formation process.

Reference

Reference
1.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2010
, “
Thermally Enhanced Machining of Hard-to-Machine Materials—A Review
,”
Int. J. Mach. Tools Manuf.
,
50
(
8
), pp.
663
680
.10.1016/j.ijmachtools.2010.04.008
2.
Tosun
,
N.
, and
Özler
,
L.
,
2002
, “
A Study of Tool Life in Hot Machining Using Artificial Neural Networks and Regression Analysis Method
,”
J. Mater. Process. Technol.
,
124
(
1–2
), pp.
99
104
.10.1016/S0924-0136(02)00086-9
3.
Amin
,
A. K. M. N.
, and
Talantov
,
N. V.
,
1986
, “
Influence of Instability of Chip Formation and Preheating of Work on Tool Life in Machining High Temperature Resistance Steel and Titanium Alloy
,”
Mech. Eng. Res. Bull.
,
9
, pp.
52
62
. Available at http://irep.iium.edu.my/29496/1/1986_Influence_of_the_instability_of_chip_formation.pdf
4.
Anderson
,
M.
,
Patwa
,
R.
, and
Shin
,
Y. C.
,
2006
, “
Laser-Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1879
1891
.10.1016/j.ijmachtools.2005.11.005
5.
Bejjani
,
R.
,
Shi
,
B.
,
Attia
,
H.
, and
Balazinski
,
M.
,
2011
, “
Laser Assisted Turning of Titanium Metal Matrix Composite
,”
CIRP Ann.
,
60
(
1
), pp.
61
64
.10.1016/j.cirp.2011.03.086
6.
Dandekar
,
C. R.
,
Shin
,
Y. C.
, and
Barnes
,
J.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti-6al-4v) Via LAM and Hybrid Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
174
182
.10.1016/j.ijmachtools.2009.10.013
7.
Germain
,
G.
,
Morel
,
F.
,
Lebrun
,
J. L.
, and
Morel
,
A.
,
2007
, “
Machinability and Surface Integrity for a Bearing Steel and a Titanium Alloy in Laser Assisted Machining—(Optimisation on LAM on Two Materials)
,”
Lasers Eng.
,
17
(
5–6
), pp.
329
344
.
8.
Okushima
,
K.
, and
Kakino
,
Y.
,
1971
, “
The Residual Stress Produced by Metal Cutting
,”
CIRP Annals
,
20
, pp.
13
14
.
9.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
De Vahl Davis
,
G.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
188
(
1
), pp.
627
638
.10.1243/PIME_PROC_1974_188_074_02
10.
Ng
,
E.-G.
, and
Aspinwall
,
D. K.
,
2002
, “
Modelling of Hard Part Machining
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
222
229
.10.1016/S0924-0136(02)00146-2
11.
Mitrofanov
,
A. V.
,
Babitsky
,
V. I.
, and
Silberschmidt
,
V. V.
,
2004
, “
Finite Element Analysis of Ultrasonically Assisted Turning of Inconel 718
,”
J. Mater. Process. Technol.
,
153–154
, pp.
233
239
.10.1016/j.jmatprotec.2004.04.299
12.
Carroll Iii
,
J. T.
, and
Strenkowski
,
J. S.
,
1988
, “
Finite Element Models of Orthogonal Cutting With Application to Single Point Diamond Turning
,”
Int. J. Mech. Sci.
,
30
(
12
), pp.
899
920
.10.1016/0020-7403(88)90073-2
13.
Lin
,
Z. C.
, and
Lin
,
S. Y.
,
1992
, “
A Coupled Finite Element Model of Thermo-Elastic-Plastic Large Deformation for Orthogonal Cutting
,”
ASME J. Eng. Mater. Technol.
,
114
(
2
), pp.
218
226
.10.1115/1.2904165
14.
Kay
,
G.
,
2003
, “
Failure Modeling of Titanium 6al-4v and Aluminum 2024-T3 With the Johnson-Cook Material Model
,” Office of Aviation Research, U.S. Department of Transportation Federal Aviation Administration, Washington, DC, Technical Report No. DOT/FAA/AR-03/57.
15.
Domenico
,
U.
,
2008
, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6al4v Alloy
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
79
87
.10.1016/j.jmatprotec.2007.05.007
16.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.10.1115/1.2831013
17.
Bäker
,
M.
,
Rösler
,
J.
, and
Siemers
,
C.
,
2002
, “
A Finite Element Model of High Speed Metal Cutting With Adiabatic Shearing
,”
Comput. Struct.
,
80
(
5–6
), pp.
495
513
.10.1016/S0045-7949(02)00023-8
18.
Shet
,
C.
, and
Deng
,
X.
,
2000
, “
Finite Element Analysis of the Orthogonal Metal Cutting Process
,”
J. Mater. Process. Technol.
,
105
(
1–2
), pp.
95
109
.10.1016/S0924-0136(00)00595-1
19.
Ceretti
,
E.
,
Fallböhmer
,
P.
,
Wu
,
W. T.
, and
Altan
,
T.
,
1996
, “
Application of 2d FEM to Chip Formation in Orthogonal Cutting
,”
J. Mater. Process. Technol.
,
59
(
1–2
), pp.
169
180
.10.1016/0924-0136(96)02296-0
20.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modelling and Simulation of High-Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
(
21
), pp.
3675
3694
.10.1002/nme.1620382108
21.
Baker
,
M.
,
Rosler
,
J.
, and
Siemers
,
C.
,
2002
, “
Finite Element Simulation of Segmented Chip Formation of Ti6al4v
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
485
488
.10.1115/1.1459469
22.
Mamalis
,
A. G.
,
Horvah
,
M.
,
Branis
,
A. S.
, and
Manolakos
,
D. E.
,
2001
, “
Finite Element Simulation of Chip Formation in Orthogonal Metal Cutting
,”
J. Mater. Process. Technol.
,
110
(
1
), pp.
19
27
.10.1016/S0924-0136(00)00861-X
23.
Rhim
,
S.-H.
, and
Oh
,
S.-I.
,
2006
, “
Prediction of Serrated Chip Formation in Metal Cutting Process With New Flow Stress Model for AISI 1045 Steel
,”
J. Mater. Process. Technol.
,
171
(
3
), pp.
417
422
.10.1016/j.jmatprotec.2005.08.002
24.
Afazov
,
S. M.
,
Ratchev
,
S. M.
, and
Segal
,
J.
,
2010
, “
Modelling and Simulation of Micro-Milling Cutting Forces
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2154
2162
.10.1016/j.jmatprotec.2010.07.033
25.
Baker
,
M.
,
2006
, “
Finite Element Simulation of High-Speed Cutting Forces
,”
J. Mater. Process. Technol.
,
176
(
1–3
), pp.
117
126
.10.1016/j.jmatprotec.2006.02.019
26.
Villumsen
,
M. F.
, and
Fauerholdt
,
T. G.
,
2008
, “
Prediction of Cutting Forces in Metal Cutting, Using the Finite Element Method, a Lagrangian Approach
,” Proceedings of the 7th German LS-DYNA Forum '08, Bamberg, Germany, September 30–October 1.
27.
Arola
,
D.
, and
Ramulu
,
M.
,
1997
, “
Orthogonal Cutting of Fiber-Reinforced Composites: A Finite Element Analysis
,”
Int. J. Mech. Sci.
,
39
(
5
), pp.
597
613
.10.1016/S0020-7403(96)00061-6
28.
Chandrasekaran
,
V. V.
,
2011
, “
Finite Element Simulation of Orthogonal Metal Cutting Using Ls Dyna
,” Ph.D. thesis, Auburn University, Auburn, AL.
29.
Mahnama
,
M.
, and
Movahhedy
,
M. R.
,
2012
, “
Application of Fem Simulation of Chip Formation to Stability Analysis in Orthogonal Cutting Process
,”
J. Manuf. Process.
,
14
, pp.
188
194
.10.1016/j.jmapro.2011.12.007
30.
Xie
,
L. J.
,
Schmidt
,
J.
,
Schmidt
,
C.
, and
Biesinger
,
F.
,
2005
, “
2d FEM Estimate of Tool Wear in Turning Operation
,”
Wear
,
258
(
10
), pp.
1479
1490
.10.1016/j.wear.2004.11.004
31.
Grzesik
,
W.
,
Bartoszuk
,
M.
, and
Nieslony
,
P.
,
2005
, “
Finite Element Modelling of Temperature Distribution in the Cutting Zone in Turning Processes With Differently Coated Tools
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1204
1211
.10.1016/j.jmatprotec.2005.02.136
32.
Ahmed
,
N.
,
Mitrofanov
,
A. V.
,
Babitsky
,
V. I.
, and
Silberschmidt
,
V. V.
,
2006
, “
Analysis of Material Response to Ultrasonic Vibration Loading in Turning Inconel 718
,”
Mater. Sci. Eng.
, A,
424
(
1–2
), pp.
318
325
.10.1016/j.msea.2006.03.025
33.
Germain
,
G.
,
Dal Santo
,
P.
, and
Lebrun
,
J. L.
,
2011
, “
Comprehension of Chip Formation in Laser Assisted Machining
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
230
238
.10.1016/j.ijmachtools.2010.11.006
34.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2011
, “
Thermal and Mechanical Modeling Analysis of Laser-Assisted Micro-Milling of Difficult-to-Machine Alloys
,”
J. Mater. Process. Technol.
,
212
, pp.
601
613
.10.1016/j.jmatprotec.2011.07.016
35.
Tian
,
Y.
, and
Shin
,
Y. C.
,
2006
, “
Thermal Modeling for Laser-Assisted Machining of Silicon Nitride Ceramics With Complex Features
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
425
434
.10.1115/1.2162906
36.
Amin
,
A. K. M. N.
,
Ismail
,
A. F.
, and
Nor Khairusshima
,
M. K.
,
2007
, “
Effectiveness of Uncoated WC-Co and PCD Inserts in End Milling of Titanium Alloy—Ti-6al-4v
,”
J. Mater. Process. Technol.
,
192–193
, pp.
147
158
.10.1016/j.jmatprotec.2007.04.095
37.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
561
568
.10.1016/j.ijmachtools.2009.02.008
38.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals
,” Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, April 19–21, pp.
541
547
.
39.
Sun
,
S.
,
Brandt
,
M.
,
Barnes
,
J. E.
, and
Dargusch
,
M. S.
,
2011
, “
Experimental Investigation of Cutting Forces and Tool Wear During Laser-Assisted Milling of Ti-6al-4v Alloy
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
9
), pp.
1512
1527
.10.1177/0954405411411608
40.
Bermingham
,
M. J.
,
Palanisamy
,
S.
, and
Dargusch
,
M. S.
,
2012
, “
Understanding the Tool Wear Mechanism During Thermally Assisted Machining Ti-6al-4v
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
76
87
.10.1016/j.ijmachtools.2012.07.001
41.
Lesuer
,
D. R.
,
2000
, “
Experimental Investigationsof Material Models for Ti-6al-4v Titanium and 2024-T3 Aluminum
,” Washington, DC, Technical Report No. DOT/FAA/AR-00/25.
42.
Ye
,
G. G.
,
Xue
,
S. F.
,
Jiang
,
M. Q.
,
Tong
,
X. H.
, and
Dai
,
L. H.
,
2013
, “
Modeling Periodic Adiabatic Shear Band Evolution During High Speed Machining Ti-6al-4v Alloy
,”
Int. J. Plasticity
,
40
, pp.
39
55
.10.1016/j.ijplas.2012.07.001
43.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.10.1063/1.1707586
44.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
.10.1115/1.2831200
45.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
.10.1016/0043-1648(81)90242-8
46.
Barry
,
J.
,
Byrne
,
G.
, and
Lennon
,
D.
,
2001
, “
Observations on Chip Formation and Acoustic Emission in Machining Ti–6al–4v Alloy
,”
Int. J. Mach. Tools Manuf.
,
41
(
7
), pp.
1055
1070
.10.1016/S0890-6955(00)00096-1
You do not currently have access to this content.