A complete model of nanosecond pulsed laser scribing of arbitrary thin multilayer structures is presented. The chain of events is separated according to time-scale; an initial simulation considers material response during the pulse; another combines this result with the much slower effects of heat flow away from the laser axis. The former considers heating, vaporization and phase explosion of metals in the course of a single pulse, accounting for variations in thermal conductivity and optical absorption as the material becomes superheated and approaches its critical temperature. The latter calculates the bidimensional heat flow in a complete multilayer structure over the course of a scribing operation, combining material properties and considering removal by both short-pulse ablation and long-term heating of the work piece. Simulation results for the single pulse ablation of an aluminum target align well with published experimental data both in terms of phase-explosion threshold and ablation depth as a function of fluence. Bidimensional heat flow simulations of a polypropylene–aluminum–polypropylene triplex structure reveal the progression of events toward steady state behavior; aluminum ejected due to short-pulse ablation and plastic removed due to conduction.

References

1.
von Allmen
,
M.
,
1987
,
Laser-Beam Interactions With Materials
,
Springer-Verlag
,
Berlin
.
2.
Kannatey-Asibu
,
E.
,
2009
,
Principles of Laser Materials Processing
,
John Wiley & Sons
,
New York
.
3.
Selleri
,
S.
,
Cucinotta
,
A.
,
Poli
,
F.
, and
Passaro
,
D.
,
2009
, “
High Brilliance Fiber Lasers for the Scribing of Photovoltaic Modules
,”
Transparent Optical Networks (ICTON)
, No. 11, pp.
1
4
.
4.
Song
,
K.
, and
Xu
,
X.
,
1998
, “
Explosive Phase Transformation in Excimer Laser Ablation
,”
Appl. Surf. Sci.
,
127–129
, pp.
111
116
.10.1016/S0169-4332(97)00619-3
5.
Dömer
,
H.
, and
Bostanjoglo
,
O.
,
2003
, “
Phase Explosion in Laser-Pulsed Metal Films
,”
Appl. Surf. Sci.
,
208–209
, pp.
442
446
.10.1016/S0169-4332(02)01430-7
6.
Porneala
,
C.
, and
Willis
,
D.
,
2006
, “
Observation of Nanosecond Laser-Induced Phase Explosion in Aluminum
,”
Appl. Phys. Lett.
,
89
(
21
), p.
211121
.10.1063/1.2393158
7.
Porneala
,
C.
, and
Willis
,
D.
,
2009
, “
Time-Resolved Dynamics of Nanosecond Laser-Induced Phase Explosion
,”
J. Phys. D: Appl. Phys.
,
42
(
15
), p.
155503
.10.1088/0022-3727/42/15/155503
8.
Uppal
,
N.
, and
Shiakolas
,
P.
,
2008
, “
Micromachining Characteristics of NiTi Based Shape Memory Alloy Using Femtosecond Laser
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031117
.10.1115/1.2936380
9.
Lippert
,
T.
,
2005
, “
Interaction of Photons With Polymers: From Surface Modification to Ablation
,”
Plasma Process. Polym.
,
2
(
7
), pp.
525
546
.10.1002/ppap.200500036
10.
Prokhorov
,
A.
,
Batanov
,
V.
,
Bunkin
,
F.
, and
Fedorov
,
V.
,
1973
, “
Metal Evaporation Under Powerful Optical Radiation
,”
IEEE J. Quantum Electron.
,
9
(
5
), pp.
503
510
.10.1109/JQE.1973.1077511
11.
Zhuang
,
H.-Z.
,
Zou
,
X.-W.
,
Jin
,
Z.-Z.
, and
Tian
,
D.-C.
,
1998
, “
Metal-Nonmetal Transition of Fluid Cs Along the Liquid-Vapour Coexistence Curve
,”
Physica B
,
253
(
1–2
), pp.
68
72
.10.1016/S0921-4526(98)00387-1
12.
Kelly
,
R.
, and
Miotello
,
A.
,
1996
, “
Comments on Explosive Mechanisms of Laser Sputtering
,”
Appl. Surf. Sci.
,
96-98
, pp.
205
215
.10.1016/0169-4332(95)00481-5
13.
Martynyuk
,
M.
,
1974
, “
Vaporization and Boiling of Liquid Metal in an Exploding Wire
,”
Sov. Phys. – Tech. Phys.
,
19
(
6
), pp.
793
797
.
14.
Miotello
,
A.
, and
Kelly
,
R.
,
1999
, “
Laser-Induced Phase Explosion: New Physical Problems When a Condensed Phase Approaches the Thermodynamic Critical Temperature
,”
Appl. Phys. A
,
69
, pp.
S67
S73
.10.1007/s003399900296
15.
Xu
,
X.
,
2002
, “
Phase Explosion and Its Time Lag in Nanosecond Laser Ablation
,”
Appl. Surf. Sci.
,
197–198
, pp.
61
66
.10.1016/S0169-4332(02)00304-5
16.
Peterlongo
,
A.
,
Miotello
,
A.
, and
Kelly
,
R.
,
1994
, “
Laser-Pulse Sputtering of Aluminum: Vaporization, Boiling, Superheating, and Gas-Dynamic Effects
,”
Phys. Rev. E
,
50
(
6
), pp.
4716
4727
.10.1103/PhysRevE.50.4716
17.
Bulgakova
,
N.
, and
Bulgakov
,
A.
,
2001
, “
Pulsed Laser Ablation of Solids: Transition From Normal Vaporization to Phase Explosion
,”
Appl. Phys. A
,
73
(
2
), pp.
199
208
.10.1007/s003390000686
18.
Bulgakova
,
N.
,
Bulgakov
,
A.
, and
Babich
,
L.
,
2004
, “
Energy Balance of Pulsed Laser Ablation: Thermal Model Revised
,”
Appl. Phys. A
,
79
(
4–6
), pp.
1323
1326
.10.1007/s00339-004-2763-2
19.
Bovatsek
,
J.
,
Tamhankar
,
A.
,
Patel
,
R.
,
Bulgakova
,
N.
, and
Bonse
,
J.
,
2009
, “
Effects of Pulse Duration on the ns-Laser Pulse Induced Removal of Thin Film Materials Used in Photovoltaics
,”
Proceedings of SPIE
,
7201
, p.
720116
.
20.
Porneala
,
C.
, and
Willis
,
D.
,
2006
, “
Effect of the Dielectric Transition on Laser-Induced Phase Explosion in Metals
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1928
1936
.10.1016/j.ijheatmasstransfer.2005.11.005
21.
Gragossian
,
A.
,
Tavassoli
,
S.
, and
Shokri
,
B.
,
2009
, “
Laser Ablation of Aluminum From Normal Evaporation to Phase Explosion
,”
J. Appl. Phys.
,
105
(
10
), p.
103304
.10.1063/1.3131689
22.
Kaplan
,
A.
,
1996
, “
An Analytical Model of Metal Cutting With a Laser Beam
,”
J. Appl. Phys.
,
79
(
5
), pp.
2198
2208
.10.1063/1.361098
23.
Schulz
,
W.
,
Kostrykin
,
V.
,
Nießen
,
M.
,
Michel
,
J.
,
Petring
,
D.
,
Kreutz
,
E.
, and
Poprawe
,
R.
,
1999
, “
Dynamics of Ripple Formation and Melt Flow in Laser Beam Cutting
,”
J. Phys. D: Appl. Phys.
,
32
(
11
), pp.
1219
1228
.10.1088/0022-3727/32/11/307
24.
Tani
,
G.
,
Orazi
,
L.
,
Fortunato
,
A.
, and
Cuccolini
,
G.
,
2008
, “
Laser Ablation of Metals: A 3D Process Simulation for Industrial Applications
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031111
.10.1115/1.2917326
25.
Yilbas
,
B.
,
Akhtar
,
S.
,
Matthews
,
A.
,
Karatas
,
C.
, and
Leyland
,
A.
,
2011
, “
Microstructure and Thermal Stress Distributions in Laser Carbonitriding Treatment of Ti-6Al-4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021013
.10.1115/1.4003523
26.
Kneip
,
J.
,
Martin
,
B.
,
Loredo
,
A.
,
Mattei
,
S.
, and
Grevey
,
D.
,
2004
, “
Heat Transfer in Semi-Transparent Materials During Laser Interaction
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1805
1809
.10.1016/j.jmatprotec.2004.04.380
27.
Ilie
,
M.
,
Kneip
,
J.-C.
,
Matteï
,
S.
,
Nichici
,
A.
,
Roze
,
C.
, and
Girasole
,
T.
,
2007
, “
Through-Transmission Laser Welding of Polymers—Temperature Field Modeling and Infrared Investigation
,”
Infrared Phys. Technol.
,
51
(
1
), pp.
73
79
.10.1016/j.infrared.2007.02.003
28.
Azhikannickal
,
E.
,
Bates
,
P.
, and
Zak
,
G.
,
2012
, “
Laser Light Transmission Through Thermoplastics as a Function of Thickness and Laser Incidence Angle: Experimental and Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061007
.10.1115/1.4007619
29.
Van de Ven
,
J.
, and
Erdman
,
A.
,
2007
, “
Laser Transmission Welding of Thermoplastics–Part 1: Temperature and Pressure Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
849
858
.10.1115/1.2752527
30.
Coelho
,
J.
,
Abreu
,
M.
, and
Rodrigues
,
F.
,
2004
, “
High-Speed Laser Cutting of Superposed Thermoplastic Films: Thermal Modeling and Process Characterization
,”
Opt. Lasers Eng.
,
42
(
1
), pp.
27
39
.10.1016/S0143-8166(03)00071-X
31.
Coelho
,
J.
,
Abreu
,
M.
, and
Pires
,
M.
,
2000
, “
High-Speed Laser Welding of Plastic Films
,”
Opt. Lasers Eng.
,
34
(
4–6
), pp.
385
395
.10.1016/S0143-8166(00)00071-3
32.
Hahn
,
C.
,
Lippert
,
T.
, and
Wokaun
,
A.
,
1999
, “
Comparison of the Ablation Behavior of Polymer Films in the IR and UV With Nanosecond and Picosecond Pulses
,”
J. Phys. Chem. B
,
103
(
8
), pp.
1287
1294
.10.1021/jp983609j
33.
Sohn
,
I.-B.
,
Noh
,
Y.-C.
,
Kim
,
Y.-S.
,
Ko
,
D.-K.
,
Lee
,
J.
, and
Choi
,
Y.-J.
,
2008
, “
Laser Ablation of Polypropylene Films Using Nanosecond, Picosecond, and Femtosecond Laser
,”
J. Opt. Soc. Korea
,
12
(
1
), pp.
38
41
.10.3807/JOSK.2008.12.1.038
34.
Lutey
,
A.
,
Sozzi
,
M.
,
Carmignato
,
S.
,
Selleri
,
S.
,
Cucinotta
,
A.
, and
Molari
,
P.-G.
,
2013
, “
Nanosecond and Sub-Nanosecond Pulsed Laser Ablation of Thin Single and Multi-Layer Packaging Films
,”
Appl. Surf. Sci.
(in press).10.1016/j.apsusc.2013.08.054
35.
Wait
,
J.
,
1962
,
Electromagnetic Waves in Stratified Media
,
Pergamon Press Ltd.
,
Oxford, UK
.
36.
Yeh
,
P.
,
Yariv
,
A.
, and
Hong
,
C.-S.
,
1977
, “
Electromagnetic Propagation in Periodic Stratified Media. I. General Theory
,”
J. Opt. Soc. Am.
,
67
(
4
), pp.
423
438
.10.1364/JOSA.67.000423
37.
Prentice
,
J.
,
2000
, “
Coherent, Partially Coherent and Incoherent Light Absorption in Thin-Film Multilayer Structures
,”
J. Phys. D: Appl. Phys.
,
33
(
24
), pp.
3139
3145
.10.1088/0022-3727/33/24/302
38.
Centurioni
,
E.
,
2005
, “
Generalized Matrix Method for Calculation of Internal Light Energy Flux in Mixed Coherent and Incoherent Multilayers
,”
Appl. Opt.
,
44
(
35
), pp.
7532
7539
.10.1364/AO.44.007532
39.
Desai
,
P.
,
James
,
H.
, and
Ho
,
C.
,
1984
, “
Electrical Resistivity of Aluminum and Manganese
,”
J. Phys. Chem. Ref. Data
,
13
(
4
), pp.
1131
1172
.10.1063/1.555725
40.
Morel
,
V.
,
Bultel
,
A.
, and
Chéron
,
B.
,
2009
, “
The Critical Temperature of Aluminum
,”
Int. J. Thermophys.
,
30
(
6
), pp.
1853
1863
.10.1007/s10765-009-0671-6
41.
Wu
,
B.
, and
Shin
,
Y.
,
2006
, “
Absorption Coefficient of Aluminum Near the Critical Point and the Consequences on High-Power Nanosecond Laser Ablation
,”
Appl. Phys. Lett.
,
89
(
11
), p.
111902
.10.1063/1.2352804
42.
Born
,
M.
, and
Wolf
,
E.
,
1986
,
Principles of Optics
, 6th ed.,
Pergamon Press Ltd.
,
Oxford, UK
.
43.
Hatch
,
J.
, ed.,
1984
,
Aluminium: Properties and Physical Metallurgy
,
American Society for Metals
,
Materials Park, OH
.
44.
Xu
,
Y.
, and
Yan
,
X.
,
2010
,
Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials
,
Springer-Verlag
,
London
.
45.
Singh
,
R.
, and
Viatella
,
J.
,
1994
, “
Estimation of Plasma Absorption Effects During Pulsed Laser Ablation of High-Critical-Temperature Superconductors
,”
J. Appl. Phys.
,
75
(
2
), pp.
1204
1206
.10.1063/1.356477
46.
Kurek
,
M.
,
Klepac
,
D.
,
Ščetar
,
M.
,
Galić
,
K.
,
Valić
,
S.
,
Liu
,
Y.
, and
Yang
,
W.
,
2011
, “
Gas Barrier and Morphology Characteristics of Linear Low-Density Polyethylene and Two Different Polypropylene Films
,”
Polym. Bull.
,
67
(
7
), pp.
1293
1309
.10.1007/s00289-011-0494-z
47.
Passaglia
,
E.
, and
Kevorkian
,
H.
,
1963
, “
Specific Heat of Atactic and Isotactic Polypropylene and the Entropy of the Glass
,”
J. Appl. Phys.
,
34
(
1
), pp.
90
97
.10.1063/1.1729095
48.
Maier
,
C.
, and
Calafut
,
T.
,
1998
.
Polypropylene: The Definitive User's Guide and Databook
,
Plastics Design Library, Elsevier
, Waltham, MA.
You do not currently have access to this content.