Laser metal deposition (LMD) is used to construct functional parts in a layer-by-layer fashion. The heat transfer from the melt region to the solid region plays a critical role in the resulting material properties and part geometry. The heat transfer dynamics can change significantly as the number of layers increase, depending on the geometry of the sub layers. However, this effect is not taken into account in previous analytical models, which are only valid for a single layer. This paper develops a layer dependent model of the LMD process for the purpose of designing advanced layer-to-layer controllers. A lumped-parameter model of the melt pool is introduced and then extended to include elements that capture height dependent effects on the melt pool dimensions and temperature. The model dynamically relates the process inputs (laser power, material mass flow rate, and scan speed) to the melt pool dimensions and temperature. A finite element analysis (FEA) is then conducted to determine the effect of scan speed and part height on the solid region temperature gradient at the melt pool solidification boundary. Finally, experimental results demonstrate that the model successfully predicts multilayer phenomenon for two deposits on two different substrates.

References

References
1.
Choi
,
J.
,
2002
, “
Process and Properties Control in Laser Aided Direct Metal/Materials Deposition Process
,”
Proceedings of ASME IMECE
,
New Orleans, LA
, Nov. 17–22, pp.
81
89
.
2.
Doumanidis
,
C.
, and
Kwak
,
Y.-M.
,
2001
, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing With Material Deposition
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
45
52
.10.1115/1.1344898
3.
Kaplan
,
A. F. H.
, and
Groboth
,
G.
,
2001
, “
Process Analysis of Laser Beam Cladding
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
609
613
.10.1115/1.1344899
4.
Pinkerton
,
A.
, and
Li
,
L.
,
2004
, “
An Analytical Model of Energy Distribution in Laser Direct Metal Deposition
,”
Proc. Inst. Mech. Eng., Part B
,
218
, pp.
363
374
.10.1243/095440504323055498
5.
Pinkerton
,
A.
, and
Li
,
L.
,
2004
, “
Modelling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances
,”
J. Phys. D: Appl. Phys.
,
37
, pp.
1885
1895
.10.1088/0022-3727/37/14/003
6.
Han
,
L.
,
Liou
,
F. W.
, and
Musti
,
S.
,
2005
, “
Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process
,”
ASME J. Heat Transfer
,
127
, pp.
1005
1014
.10.1115/1.2005275
7.
Bennon
,
W.
, and
Incropera
,
F.
,
1987
, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems I
,”
Int. J. Heat Mass Transfer
,
30
, pp.
2171
2187
.10.1016/0017-9310(87)90095-0
8.
Bennon
,
W.
, and
Incropera
,
F.
,
1987
, “
A Continuum Model for Momentum, Heat, and Species Transport in Binary Solid-Liquid Phase Change Systems II
,”
Int. J. Heat Mass Transfer
,
30
, pp.
2161
2170
.10.1016/0017-9310(87)90094-9
9.
Hua
,
Y.
, and
Choi
,
J.
,
2005
, “
Adaptive Direct Metal/Material Deposition Process Using a Fuzzy Logic-based Controller
,”
J. Laser Appl.
,
17
, pp.
200
210
.10.2351/1.2098811
10.
Choi
,
J.
, and
Chang
,
Y.
,
2006
, “
Analysis of Laser Control Effects for Direct Metal Deposition Process
,”
J. Mech. Sci. Technol.
,
20
, pp.
1680
1690
.10.1007/BF02916272
11.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward PID Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
, pp.
280
292
.10.1007/s00170-006-0721-1
12.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
031003
.10.1115/1.2823085
13.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
133
, p.
021009
.10.1115/1.4003691
14.
Beuth
,
J.
, and
Klingbeil
,
N. W.
,
2001
, “
The Role of Process Variables in Laser-Based Direct Metal Solid Freeform Fabrication
,”
J. Minerals, Metals Mater. Soc.
,
53
, pp.
36
39
.10.1007/s11837-001-0067-y
15.
Bontha
,
S.
,
Klingbeil
,
N. W.
,
Kobryn
,
P. A.
, and
Fraser
,
H. L.
,
2006
, “
Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Walled Structures
,”
J. Mater. Process. Technol.
,
178
, pp.
135
142
.10.1016/j.jmatprotec.2006.03.155
16.
Bontha
S.
, and
Klingbeil
,
N. W.
,
2003
, “
Thermal Process Maps for Controlling Microstructure in Laser-Based Solid Freeform Fabrication
,”
Solid Freeform Fabrication Proceedings
,
Austin, TX
, Aug. 4–6.
17.
Esser
,
W. G.
, and
Walter
,
R.
,
1981
, “
Heat Transfer and Penetration Mechanisms With GMA and Plasma GMA Welding
,”
Weld. J.
,
60
, pp.
37s
42s
.
18.
Thorn
,
K.
,
Feenstra
,
M.
,
Young
,
J. C.
,
Lawson
,
W. H. S.
, and
Kerr
,
H. W.
,
1982
, “
The Interaction of Process Variables-Their Influence on Weld Dimensions in GMA Welds on Steel Plates
,”
Met. Constr.
,
14
, pp.
128
133
.
19.
Crank
,
J.
,
1984
,
Free and Moving Boundary Problems
,
Clarendon Press
,
London
.
20.
Meriaudeau
,
F.
, and
Truchetet
,
F.
,
1996
, “
Control and Optimization of the Laser Cladding Process Using Matrix Cameras and Image Processing
,”
J. Laser Appl.
,
8
, pp.
317
324
.10.2351/1.4745438
You do not currently have access to this content.