This paper presents a procedure for the identification of Johnson Cook model parameters and Tresca's law friction factor for orthogonal cutting of AISI 304. The process is described by a thermomechanical numerical model. The parameters are identified by minimizing the error in the prediction of cutting force, chip thickness, and chip curvature. Two optimization algorithms where tested: a pure Nelder–Mead method (NMM), and a hybrid procedure, in which the starting simplex for NMM is calculated by means of a genetic algorithm. The results emphasize the importance of the initial guess chosen in the optimization to obtain a reliable set of parameters. By using the optimized parameters in the numerical model, the cutting force, the chip thickness, and the chip curvature can be evaluated with an acceptable accuracy. The identified rheological and tribological coefficients are validated for different orthogonal cutting conditions.

References

References
1.
Benardos
,
P.
, and
Vosniakos
,
G.
,
2002
, “
Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi's Design of Experiments
,”
Rob. Comput. Integr. Manuf.
,
18
, pp.
343
354
.10.1016/S0736-5845(02)00005-4
2.
Sivasakthivel
,
P.
,
Murugan
,
V. V.
, and
Sudhakaran
,
R.
,
2010
, “
Prediction of Tool Wear From Machining Parameters by Response Surface Methodology in End Milling
,”
Int. J. Eng. Sci. Technol.
,
6
, pp.
1780
1789
.
3.
Fang
,
N.
,
Jawahir
,
I. S.
, and
Oxley
,
P. L. B.
,
2001
, “
A Universal Slip-Line Model With Non-Unique Solutions for Machining With Curled Chip Formation and a Restricted Contact Tool
,”
Int. J. Mech. Sci.
,
43
, pp.
557
580
.10.1016/S0020-7403(99)00117-4
4.
Movahhedy
,
M.
,
Gadala
,
M.
, and
Altintas
,
Y.
,
2000
, “
Simulation of the Orthogonal Metal Cutting Process Using an Arbitrary Lagrangian Eulerian Finite-Element Method
,”
J. Mater. Process. Technol.
,
103
, pp.
267
275
.10.1016/S0924-0136(00)00480-5
5.
Umbrello
,
D.
,
M'Saoubi
,
R.
, and
Outeiro
,
J.
,
2005
, “
Three-Dimensional Thermo–Elastic–Plastic Coupled FEM Simulations for Metal Oblique Cutting Processes
,”
J. Mater. Process. Technol.
,
168
, pp.
42
48
.10.1016/j.jmatprotec.2004.10.013
6.
Shi
,
J.
, and
Liu
,
C.
,
2004
, “
The Influence of Material Models on Finite Element Simulation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
849
857
.10.1115/1.1813473
7.
Dorogoy
,
A.
, and
Rittel
,
D.
,
2009
, “
Determination of the Johnson-Cook Material Parameters Using the SCS Specimen
,”
Exp. Mech.
,
49
, pp.
881
885
.10.1007/s11340-008-9201-x
8.
Vural
,
M.
,
Rittel
,
D.
, and
Ravichandran
,
G.
,
2003
, “
Large Strain Mechanical Behavior of 1018 Cold-Rolled Steel Over a Wide Range of Strain Rates
,”
Metall. Mater. Trans.
,
34A
, pp.
2873
2885
.10.1007/s11661-003-0188-8
9.
Allen
,
D.
,
Rule
,
W.
, and
Jones
,
S.
,
1997
, “
Optimizing Material Strength Constants Numerically Extracted From Taylor Impact Data
,”
Exp. Mech.
,
37
, pp.
333
338
.10.1007/BF02317427
10.
Hokka
,
M.
,
Kokkonen
,
J.
,
Seidt
,
J.
,
Matrka
,
T.
,
Gilat
,
A.
, and
Kuokkala
,
V.-T.
,
2012
, “
High Strain Rate Torsion Properties of Ultrafine-Grained Aluminum
,”
Exp. Mech.
,
52
(
2
), pp.
195
203
.10.1007/s11340-011-9511-2
11.
Hokka
,
M.
,
Leemet
,
T.
,
Shrot
,
A.
,
Baeker
,
M.
, and
Kuokkala
,
V.-T.
,
2012
, “
Characterization and Numerical Modeling of High Strain Rate Mechanical Behavior of Ti-15-3 Alloy for Machining Simulations
,”
Mater. Sci. Eng. A
,
550
, pp.
350
357
.10.1016/j.msea.2012.04.086
12.
Chandrasekaran
,
H.
,
M'Saoubi
,
R.
, and
Chazal
,
H.
,
2005
, “
Modelling of Material Flow Stress in Chip Formation Process From Orthogonal Milling and Split Hopkinson Bar Tests
,”
Mach. Sci. Technol.
,
9
, pp.
131
145
.10.1081/MST-200051380
13.
Shrot
,
A.
, and
Bäker
,
M.
,
2011
, “
How to Identify Johnson-Cook Parameters From Machinning Simulations
,”
Proceedings of the 14th International ESAFORM Conference on Material Forming, AIP Conference Proceedings
, pp.
29
34
.
14.
Shrot
,
A.
, and
Bäker
,
M.
,
2012
, “
Determination of Johnson-Cook Parameters From Machining Simulations
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
298
304
.10.1016/j.commatsci.2011.07.035
15.
Bäker
,
M.
, and
Shrot
,
A.
,
2013
, “
Inverse Parameter Identification With Finite Element Simulations Using Knowledge-Based Descriptors
,”
Comput. Mater. Sci.
,
69
(
0
), pp.
128
136
.10.1016/j.commatsci.2012.11.059
16.
Ocaña
,
J.
,
Morales
,
M.
,
Molpeceres
,
C.
,
García
,
O.
,
Porro
,
J.
, and
García-Ballesteros
,
J.
,
2008
, “
Numerical Modelling and Experimental Characterization of Short Pulse Laser Microforming of Thin Metal Sheets
,”
Proc. of the 4M2008 Conference Multi-Mater. Micro Manuf.
, Cardiff, UK, September 9–11, pp.
131
145
.
17.
Mori
,
L.
,
Lee
,
S.
,
Xue
,
Z.
,
Vaziri
,
A.
,
Queheillalt
,
D.
,
Dharmasena
,
K.
,
Wadley
,
H.
,
Hutchinson
,
J.
, and
Espinosa
,
H. D.
,
2007
, “
Deformation and Fracture Model on Sandwich Structures Subjected to Underwater Impulsive Loads
,”
J. Mech. Mater. Struct.
,
10
, pp.
1981
2006
.10.2140/jomms.2007.2.1981
18.
Bort
,
C. G.
,
Bruschi
,
S.
, and
Bosetti
,
P.
,
2011
, “
Johnson Cook Parameter Identification for AISI-304 Machining Through Nelder-Mead Method
,”
Proceedings of the XI International Conference on Computational Plasticity Fundamentals and Applications
, pp.
1
12
.
19.
Chelouah
,
R.
, and
Siarry
,
P.
,
2003
, “
Genetic and Nelder-Mead Algorithms Hybridized for a More Accurate Global Optimization of Continuous Multiminima Functions
,”
Eur. J. Oper. Res.
,
148
, pp.
335
348
.10.1016/S0377-2217(02)00401-0
20.
Mendez
,
A.
, and
Coello
,
C.
,
2009
, “
A New Proposal to Hybridize the Nelder-Mead Method to a Differential Evolution Algorithm for Constrained Optimization
,”
2009 IEEE Congress on Evolutionary Computation
, CEC 2009, art. no. 4983268, pp.
2598
2605
.10.1109/CEC.2009.4983268
21.
Pang
,
L.
, and
Kishawy
,
H.
,
2012
, “
Modified Primary Shear Zone Analysis for Identification of Material Mechanical Behavior During Machining Process Using Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
041003
.10.1115/1.4006768
22.
Johnson
,
G.
, and
Cook
,
W.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rate, and Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
, The Hague, The Netherlands, April 19–21, pp.
1
7
.
23.
Yan
,
H.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2007
, “
Flow Stress of AISI H13 Die Steel in Hard Machining
,”
Mater. Des.
,
28
, pp.
272
277
.10.1016/j.matdes.2005.06.017
24.
Usui
,
E.
, and
Shirakashi
,
T.
,
1982
, “
Mechanics of Machining—From Descriptive to Predictive Theory, on the Art of Cutting Metals—75 Years Later
,” Vol.
PED 7
,
ASME Publications
.
25.
Childs
,
T.
,
1998
, “
Material Property Needs in Modeling Metal Machining
,”
Proceedings of the CIRP International Workshop on Modeling of Machining Operations
, pp.
193
202
.
26.
Mathews
,
J.
, and
Fink
,
K.
,
2004
,
Numerical Methods Using Matlab
,
4th ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Wang
,
L.
,
Xu
,
Y.
, and
Li
,
L.
,
2011
, “
Parameter Identification of Chaotic Systems by Hybrid Nelder-Mead Simplex Search and Differential Evolution Algorithm
,”
Expert Syst. Appl.
,
38
, pp.
3238
3245
.10.1016/j.eswa.2010.08.110
28.
Zahara
,
E.
, and
Kao
,
Y.
,
2009
, “
Hybrid Nelder-Mead Simplex Search and Particle Swarm Optimization for Constrained Engineering Design Problems
,”
Expert Syst. Appl.
,
38
, pp.
3880
3886
.10.1016/j.eswa.2008.02.039
29.
Sonmez
,
F.
, and
Akbulut
,
M.
,
2007
, “
Process Optimization of Tape Placement for Thermoplastic Composites
,”
Composites
,
38
, pp.
2013
2023
.10.1016/j.compositesa.2007.05.003
30.
Cernivec
,
G.
,
Krc
,
J.
,
Smole
,
F.
, and
Topic
,
M.
,
2006
, “
Band-Gap Engineering in CIGS Solar Cells Using Nelder-Mead Simplex Optimization Algorithm
,”
Thin Solid Films
,
511–512
, pp.
60
65
.10.1016/j.tsf.2005.11.095
31.
Sacco
,
W.
,
Filho
,
H.
,
Henderson
,
N.
, and
de Oliveira
,
C.
,
2007
, “
A Metropolis Algorithm Combined With Nelder-Mead Simplex Applied To Nuclear Reactor Core Design
,”
Nucl. Energy
,
35
(5), pp.
861
867
.10.1016/j.anucene.2007.09.00
32.
Franulović
,
M.
,
Basan
,
R.
, and
Prebil
,
I.
,
2009
, “
Genetic Algorithm in Material Model Parameters' Identification for Low-Cycle Fatigue
,”
Comput. Mater. Sci.
,
45
, pp.
505
510
.10.1016/j.commatsci.2008.11.012
33.
Aguir
,
H.
,
BelHadjSalah
,
H.
, and
Hambli
,
R.
,
2011
, “
Parameter Identification of an Elasto-Plastic Behaviour Using Artificial Neural Networks-Genetic Algorithm Method
,”
Mater. Des.
,
32
, pp.
48
53
.10.1016/j.matdes.2010.06.039
34.
Nyarko
,
E.
, and
Scitovski
,
R.
,
2004
, “
Solving the Parameter Identification Problem of Mathematical Models Using Genetic Algorithms
,”
Appl. Math. Comput.
,
153
, pp.
651
658
.10.1016/S0096-3003(03)00661-1
35.
Kang
,
Y.
,
Lin
,
X.
, and
Qin
,
Q.
,
2004
, “
Inverse/Genetic Method and Its Application in Identification of Mechanical Parameters of Interface in Composite
,”
Compos. Struct.
,
66
, pp.
449
458
.10.1016/j.compstruct.2004.04.067
36.
Zadshakoyan
,
M.
, and
Pourmostaghimi
,
V.
,
2012
, “
Genetic Equation for the Prediction of Tool-Chip Contact Length in Orthogonal Cutting
,”
Eng. Appl. Artif. Intell.
,
26
, pp.
1725
1730
.10.1016/j.engappai.2012.10.016
37.
Quiza Sardiñas
,
R.
,
Rivas Santana
,
M.
, and
Brindis
,
E. A.
,
2006
, “
Genetic Algorithm-Based Multi-Objective Optimization of Cutting Parameters in Turning Processes
,”
Eng. Appl. Artif. Intell.
,
19
(
2
), pp.
127
133
.10.1016/j.engappai.2005.06.007
38.
Luksan
,
L.
, and
Vlcek
,
J.
,
2003
,
Test Problems for Unconstrained Optimization
,
Institute of Computer Science, Academy of Sciences of the Czech Republic
, Prague, Czech Republic.
39.
Moré
,
J.
,
Garbow
,
B.
, and
Hillstrom
,
K. E.
,
1981
, “
Testing Unconstrained Optimization Software
,”
ACM Trans. Math. Softw.
,
7
, pp.
17
41
.10.1145/355934.355936
40.
Aquaro
,
D.
,
2006
, “
Erosion Rate of Stainless Steel Due to the Impact of Solid Particles
,”
Proceedings of AITC-AIT 2006 International Conference on Tribology
.
41.
D'Urso
,
G.
, and
Attanasio
,
A.
,
2011
, “
Analytical and Numerical Modeling of Strain Hardening in AISI 304 Steel Cutting
,”
Adv. Mater. Res.
,
223
, pp.
381
390
.10.4028/www.scientific.net/AMR.223.381
You do not currently have access to this content.