Laser cutting of aluminum foam with 9 mm thickness is carried out and thermal stress field developed in the cut section is simulated using finite element code. Morphological changes in the cut section are examined through optical and scanning electron microscopes. The oxide compounds formed at the cut section during the cutting are identified using X-ray diffraction. It is found that parallel sided cut edges are resulted during laser cutting. The maximum von Mises stress in the cut section is on the order of few MPa, which is close to the yielding limit of the workpiece material. Some small scattered sideways burning resulting in local thermal erosion along the cut edges is observed.

References

References
1.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
B. H.
,
2003
, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
, pp.
262
267
.10.1109/TCAPT.2003.809540
2.
Deqing
,
W.
,
Weiwei
,
X.
,
Xiangjun
,
M.
, and
Ziyuan
,
S.
,
2005
, “
Cell Structure and Compressive Behavior of an Aluminum Foam
,”
J. Mater. Sci.
,
40
, pp.
3475
3480
.10.1007/s10853-005-2852-4
3.
Campana
,
G.
,
Bertuzzi
,
G.
,
Tani
,
G.
,
Bonaccorsi
,
L. M.
, and
Proverbio
,
E.
,
2008
, “
Experimental Investigation Into Laser Welding of Aluminum Foam Filled Steel Tubes
,”
Proceedings of the 5th International Conference on Porous Metals and Metallic Foams, MetFoam 2007
, pp.
453
456
.
4.
Chaurasia
,
S.
,
Tripathi
,
S.
,
Munda
,
D. S.
,
Mishra
,
G.
,
Murali
,
C. G.
,
Gupta
,
N. K.
,
Dhareshwar
,
L. J.
,
Rossall
,
A. K.
,
Tallents
,
G. J.
,
Singh
,
R.
,
Kohli
,
D. K.
, and
Khardekar
,
R. K.
,
2010
, “
Laser Interaction With Low-Density Carbon Foam
,”
Pramana, J. Phys.
,
75
(
6
), pp.
1191
1196
.10.1007/s12043-010-0205-6
5.
Yoshida
,
Y.
,
Yajima
,
Y.
,
Hashidate
,
H.
,
Ogura
,
H.
, and
Ueda
,
S.
,
2002
, “
Hole Drilling of Glass-Foam Substrates With Laser
,”
Proc. SPIE
4426
,
154
157
.10.1117/12.456803
6.
Guglielmotti
,
A.
,
Quadrini
,
F.
,
Squeo
,
E. A.
, and
Tagliaferri
,
V.
,
2009
, “
Laser Bending of Aluminum Foam Sandwich Panels
,”
Adv. Eng. Mater.
,
11
(
11
), pp.
902
906
.10.1002/adem.200900111
7.
Kathuria
,
Y. P.
,
2003
, “
A Preliminary Study on Laser Assisted Aluminum Foaming
,”
J. Mater. Sci.
,
38
(
13
), pp.
2875
2881
.10.1023/A:1024488503856
8.
Carcel
,
B.
,
Carcel
,
A. C.
,
Perez
,
I.
,
Fernandez
,
E.
,
Barreda
,
A.
,
Sampedro
,
J.
, and
Ramos
,
J. A.
,
2009
, “
Manufacture of Metal Foam Layers by Laser Metal Deposition
,”
Proc. SPIE
7131
, pp. 7131–7157.10.1117/12.816702
9.
Ocelík
,
V.
,
van Heeswijk
,
V.
,
De Hosson
,
J.
Th.
M.
, and
Csach
,
K.
,
2004
, “
Foam Coating on Aluminum Alloy With Laser Cladding
,”
J. Laser Appl.
,
16
(
2
), pp.
79
84
.10.2351/1.1710883
10.
Gamaly
,
E. G.
,
Rode
,
A. V.
, and
Luther-Davies
,
B.
,
2000
, “
Formation of Diamond-Like Carbon Films and Carbon Foam by Ultrafast Laser Ablation
,”
Laser Part. Beams
,
18
(
2
), pp.
245
254
.10.1017/S0263034600182138
11.
Yilbas
,
B. S.
, and
Arif
,
A. F. M.
,
2009
, “
Laser Cutting of Steel and Thermal Stress Development
,”
Opt. Laser Technol.
,
43
(
4
), pp.
830
837
.10.1016/j.optlastec.2010.11.002
12.
Yilbas
,
B. S.
,
Arif
,
A. F. M.
, and
Aleem
,
B. J.
,
2009
, “
Laser Cutting of Large Aspect Ratio Rectangular Blank in Thick Sheet Metal: Thermal Stress Analysis
,”
Proc. Inst. Mech. Eng., Part B (J. Eng. Manuf.)
,
223
, pp.
63
71
.10.1243/09544054JEM1203
13.
Yilbas
,
B. S.
,
Akhtar
,
S. S.
, and
Karatas
,
C.
,
2011
, “
Laser Cutting of Small Diameter Holes Into Alumina Tiles: Thermal Stress Analysis
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p. 024503.10.1115/1.4003737
14.
Yilbas
,
B. S.
,
Akhtar
,
S. S.
, and
Karatas
,
C.
,
2012
, “
Laser Straight Cutting of Alumina Tiles: Thermal Stress Analysis
,”
Int. J. Adv. Manuf. Technol.
,
58
, pp.
1019
1030
.10.1007/s00170-011-3439-7
15.
Mukarami
,
T.
,
Tsumura
,
T.
,
Ikeda
,
T.
,
Nakajima
,
H.
, and
Nakata
,
K.
,
2007
, “
Ansitropic Fusion Profile and Joint Strength of Lotus-Type Porous Magnesium by Laser Welding
,”
Mater. Sci. Eng., A
,
456
, pp.
278
285
.10.1016/j.msea.2006.11.162
16.
Coquard
,
R.
, and
Baillis
,
D.
,
2009
, “
Numerical Investigation of Conductive Heat Transfer in High-Porosity Foams
,”
Acta Mater.
,
57
, pp.
5466
5479
.10.1016/j.actamat.2009.07.044
17.
Scintilla
,
L. D.
, and
Tricarico
,
L.
,
2012
, “
Estimating Cutting Front Temperature Difference in Disk and CO2 Laser Beam Fusion Cutting
,”
Opt. Laser Technol.
,
44
, pp.
1468
1479
.10.1016/j.optlastec.2011.12.016
18.
Guo
,
S.
,
Jun
,
H.
,
Lei
,
L.
, and
Yao
,
Z.
,
2009
, “
Numerical Analysis of Supersonic Gas-Dynamic Characteristic in Laser Cutting
,”
Opt. Lasers Eng.
,
47
, pp.
103
110
.10.1016/j.optlaseng.2008.07.020
19.
Ottoa
,
A.
,
Koch
,
H.
,
Leitz
,
K.
, and
Schmidt
,
M.
,
2011
, “
Numerical Simulations—A Versatile Approach for Better Understanding Dynamics in Laser Material Processing
,”
Phys. Procedia
,
12
, pp.
11
20
.10.1016/j.phpro.2011.03.003
20.
Ottoa
,
A.
, and
Schmidt
,
M.
,
2010
, “
Towards a Universal Numerical Simulation Model for Laser Material Processing
,”
Phys. Procedia
,
5
, pp.
35
46
.10.1016/j.phpro.2010.08.120
21.
Gross
,
M. S.
,
Black
,
I.
, and
Müller
,
W. H.
,
2004
, “
Determination of the Lower Complexity Limit for Laser Cut Quality Modeling
,”
Model. Simul. Mater. Sci. Eng.
,
12
, pp.
1237
1249
.10.1088/0965-0393/12/6/016
22.
Gross
,
M. S.
,
2006
, “
On Gas Dynamic Effects in the Modelling of Laser Cutting Processes
,”
Appl. Math. Model.
,
30
, pp.
307
318
.10.1016/j.apm.2005.03.021
23.
Kovalev
,
O. B.
,
Yudin
,
P. V.
, and
Zaitsev
,
A. V.
,
2009
, “
Modeling of Flow Separation of Assist Gas as Applied to Laser Cutting of Thick Sheet Metal
,”
Appl. Math. Model.
,
33
, pp.
3730
3745
.10.1016/j.apm.2008.12.011
24.
Ready
,
J. F.
,
1976
, “
Change of Reflectivity of Metallic Surfaces During Irradiation by C02-TEA Laser Pulses
,”
IEEE J. Quantum Electron.
,
QE-12
, pp.
137
142
.10.1109/JQE.1976.1069106
25.
Shuja
,
S. Z.
, and
Yilbas
,
B. S.
,
2000
, “
The Influence of Gas Jet Velocity in Laser Heating-a Moving Workpiece Case
,
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
214
, pp.
1059
1078
.10.1243/0954406001523524
26.
ABAQUS Theory Manual
, version 6.9,
2009
, ABAQUS Inc., Pawtucket.
27.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
,
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
, pp.
277
298
.10.1016/S0734-743X(99)00153-0
28.
Yilbas
,
B. S.
,
Davies
,
R.
,
Gorur
,
A.
,
Yilbas
,
Z.
,
Begh
,
F.
,
Kalkat
,
M.
, and
Akcakoyun.
N.
,
1990
, “
Study Into the Measurement and Prediction of Penetration Time During CO2 Laser Cutting Process
,”
Proc. Inst. Mech. Eng., Part B
,
204
, pp.
105
113
.10.1243/PIME_PROC_1990_204_053_02
29.
Swinehart
,
D. F.
,
1962
, “
The Beer-Lambert Law
,”
J. Chem. Educ.
,
39
, pp. 333–334.10.1021/ed039p333
30.
McCullough
,
K. Y. G.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2000
, “
The Stress-Life Behavior of Aluminum Alloy Foams
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
, pp.
199
208
.10.1046/j.1460-2695.2000.00261.x
31.
Yilbas
,
B. S.
,
2008
, “
Laser Cutting of Thick Sheet Metals: Effects of Cutting Parameters on Kerf Size Variations
.”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
285
290
.10.1016/j.jmatprotec.2007.11.265
32.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
, pp.
1253
1283
.10.1016/S0022-5096(99)00082-4
33.
Fleck
,
N. A.
,
Olurin
,
O. B.
,
Chen
,
C.
, and
Ashby
,
M. F.
,
2001
, “
The Effect of Hole Size Upon the Strength of Metallic and Polymeric Foams
,”
J. Mech. Phys. Solids
,
49
, pp.
2015
2030
.10.1016/S0022-5096(01)00033-3
34.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Washington, DC
.
35.
Onck
,
P. R.
,
2001
, “
Application of a Continuum Constitutive Model to Metallic Foam DEN-Specimens in Compression
,”
Int. J. Mech. Sci.
,
43
, pp.
2947
2959
.10.1016/S0020-7403(01)00060-1
You do not currently have access to this content.