The possibility of predicting the amount of the tool wear in machining processes is an interesting topic for industries, since tool wear affects surface integrity of the final parts and tool life is strictly connected with substitution policy and production costs. The definition of models able to correctly forecast the tool wear development is an important topic in the research field. For this reason in the present work, a comparison between response surface methodology (RSM) and artificial neural networks (ANNs) fitting techniques in tool wear forecasting was performed. For developing these predictive models, experimental values of tool wear, obtained by longitudinal turning operations with variable cutting parameters, were collected. Once selected, the best configuration of the two previously mentioned techniques, the resultant errors with respect to experimental data were estimated and then compared. The results showed that the developed models are able to predict the amount of wear. The comparison demonstrated that ANNs give better approximation than RSM in the prediction of the amount of the flank wear (VB) and of the crater wear (KT) depth. The obtained results are interesting not only from a scientific point of view but also for industries. In fact, it should be possible to implement the best model into a production manager software in order to correctly define the tool change during the lot production.

References

References
1.
Childs
,
T. H. C.
,
Maekawa
,
K.
,
Obikawa
,
T.
, and
Yamane
,
Y.
,
2000
,
Metal Machining: Theory and Applications
,
1st ed.
,
Butterworth-Heinemann
,
Washington, DC
.
2.
Grzesik
,
W.
,
2008
, “
Influence of Tool Wear on Surface Roughness in Hard Turning Using Differently Shaped Ceramic Tools
,”
Wear
,
265
, pp.
327
335
.10.1016/j.wear.2007.11.001
3.
Tang
,
Z. T.
,
Liu
,
Z. Q.
,
Pan
,
Y. Z.
,
Wan
,
Y. Z.
, and
Ai
,
X.
,
2009
, “
The Influence of Tool Flank Wear on Residual Stresses Induced by Milling Aluminum Alloy
,”
J. Mater. Process. Technol.
,
209
, pp.
4502
4508
.10.1016/j.jmatprotec.2008.10.034
4.
Liu
,
M.
,
Takagi
,
J.
, and
Tsukuda
,
A.
,
2004
, “
Effect of Tool Nose Radius and Tool Wear on Residual Stress Distribution in Hard Turning of Bearing Steel
,”
J. Mater. Process. Technol.
,
150
, pp.
234
241
.10.1016/j.jmatprotec.2004.02.038
5.
Lin
,
Z. C.
, and
Lee
,
B. Y.
,
1995
, “
An Investigation of the Residual Stress of a Machined Workpiece Considering Tool Flank Wear
,”
J. Mater. Process. Technol.
,
51
, pp.
1
24
.10.1016/0924-0136(94)01322-R
6.
Chou
,
Y. K.
,
2002
, “
Surface Hardening of AISI 4340 Steel by Machining: A Preliminary Investigation
,”
J. Mater. Process. Technol.
,
124
, pp.
171
177
.10.1016/S0924-0136(02)00132-2
7.
Mukherjee
,
I.
, and
Ray
,
P. K.
,
2006
, “
A Review of Optimization Techniques in Metal Cutting Processes
,”
Comput. Ind. Eng.
,
50
, pp.
15
34
.10.1016/j.cie.2005.10.001
8.
Montgomery
,
D. C.
,
1997
,
Design and Analysis of Experiments
,
5th ed.
,
John Wiley & Sons
,
New York
.
9.
Van Luttervelt
,
C. A.
,
Childs
,
T. H. C.
,
Jawahir
,
I. S.
,
Klocke
,
F.
,
Venuvinod
,
P. K.
,
Altintas
,
Y.
,
Armarego
,
E.
,
Dornfeld
,
D.
,
Grabec
,
I.
,
Leopold
,
J.
,
Lindstrom
,
B.
,
Lucca
,
D.
,
Obikawa
,
T.
,
Shirakashi
, and
Sato
,
H.
,
1998
, “
Present Situation and Future Trends in Modelling of Machining Operations Progress Report of the CIRP Working Group Modelling of Machining Operations
,”
CIRP Ann.
,
46
(
2
), pp.
587
626
.10.1016/S0007-8506(07)63244-2
10.
Bhushan
,
R. K.
,
2013
, “
Multiresponse Optimization of Al Alloy-SiC Composite Machining Parameters for Minimum Tool Wear and Maximum Metal Removal Rate
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021013
.10.1115/1.4023454
11.
Novak
,
A.
, and
Wiklund
,
H.
,
1993
, “
Reliability Improvement of Tool-Wear Monitoring
,”
CIRP Ann.
,
42
(
1
), pp.
63
66
.10.1016/S0007-8506(07)62392-0
12.
Kadirgama
,
K.
,
Abou-El-Hossein
,
K. A.
,
Noor
,
M. M.
,
Sharma
,
K. V.
, and
Mohammad
,
B.
,
2011
, “
Tool Life and Wear Mechanism When Machining Hastelloy C-22HS
,”
Wear
,
270
, pp.
258
268
.10.1016/j.wear.2010.10.067
13.
Poulachon
,
G.
,
Dessoly
,
M.
,
Le Calvez
,
C.
,
Le Brun
,
J. L.
,
Prunet
,
V.
, and
Jawahir
,
I. S.
,
2001
, “
An Investigation of the Influence of Sulphide Inclusions on Tool-Wear in High Speed Milling of Tool Steels
,”
Wear
,
250
, pp.
334
343
.10.1016/S0043-1648(01)00614-7
14.
Alauddin
,
M.
,
El Baradic
,
M. A.
, and
Hashmi
,
M. S. J.
,
1997
, “
Prediction of Tool Life in End Milling by Response Surface Methodology
,”
J. Mater. Process. Technol.
,
71
, pp.
456
465
.10.1016/S0924-0136(97)00111-8
15.
Colding
,
B. N.
,
2000
, “
Prediction, Optimization and Functional Requirements of Knowledge Based Systems
,”
CIRP Ann.
,
49
(
1
), pp.
351
354
.10.1016/S0007-8506(07)62962-X
16.
Noordin
,
M. Y.
,
Venkatesh
,
V. C.
,
Sharif
,
S.
,
Elting
,
S.
, and
Abdullah
,
A.
,
2004
, “
Application of Response Surface Methodology in Describing the Performance of Coated Carbide Tools When Turning AISI 1045 Steel
,”
J. Mater. Process. Technol.
,
145
, pp.
46
58
.10.1016/S0924-0136(03)00861-6
17.
Mashal
,
Y. A. H.
,
El-Axir
,
M. H.
, and
Kassem
,
M. A.
,
2001
, “
The Machinability and Tribological Characteristics of Aluminum Alloys With Improved Elevated Temperature Properties Using Rapidly Solidified Powder
,”
Wear
,
250
, pp.
518
528
.10.1016/S0043-1648(01)00602-0
18.
Attanasio
,
A.
,
Cappellini
,
C.
,
Ceretti
,
E.
, and
Giardini
,
C.
,
2010
, “
Tool Wear Evaluation by Means of Artificial Neural Networks in Turning
,” Proceedings of CIRP-ICME, Prof. Teti, ed., Capri, Italy, on CD.
19.
Ezugwum
,
E. O.
,
Arthur
,
S. J.
, and
Hines
,
E. L.
,
1995
, “
Tool Wear Prediction Using Artificial Neural Networks
,”
J. Mater. Process. Technol.
,
49
, pp.
255
264
.10.1016/0924-0136(94)01351-Z
20.
Cetinel
,
H.
,
Ozturk
,
H.
,
Celik
,
E.
, and
Karlik
,
B.
,
2006
, “
Artificial Neural Network-Based Prediction Technique for Wear Loss Quantities in Mo Coatings
,”
Wear
,
261
, pp.
1064
1068
.10.1016/j.wear.2006.01.040
21.
Das
,
S.
,
Roy
,
R.
, and
Chattopadhyay
,
A. B.
,
1996
, “
Evaluation of Wear of Turning Carbide Insert Using Neural Networks
,”
Int. J. Mach. Tools Manuf.
,
36
(
7
), pp.
789
797
.10.1016/0890-6955(95)00089-5
22.
Das
,
S.
,
Bandyopadhyay
,
P. P.
, and
Chattopadhyay
,
A. B.
,
1997
, “
Neural Networks Based Tool Wear Monitoring in Turning Medium Carbon Steel Using a Coated Carbide Tool
,”
J. Mater. Process. Technol.
,
63
, pp.
187
192
.10.1016/S0924-0136(96)02622-2
23.
Murray
,
W.
,
1972
,
Numerical Methods for Unconstrained Optimization
,
Academic
,
New York
.
24.
Bronshtein
,
I. N.
,
Semendyayev
,
K. A.
,
Musiol
,
G.
, and
Muehlig
,
H.
,
2007
,
Handbook of Mathematics
,
5th ed.
,
Springer
,
New York
.
You do not currently have access to this content.