Regenerative chatter is one of the main limiting factors in traverse cylindrical grinding since it involves loss of productivity, geometric inaccuracies, superficial marks, and increase of roughness. Continuous workpiece speed variation is demonstrated to be an efficient method among chatter suppression techniques but variation parameters (amplitude and frequency) are normally selected based on trial-and-errors. Therefore, a dynamic stability approach is proposed in which optimal combination of these parameters is defined based on semidiscretization technique, which consists of obtaining the eigenvalues of the transition matrix between consecutive workpiece rotations. Validation is carried out experimentally and good correlation between simulated and experimental results is achieved. Best combinations of variation parameters are achieved with amplitudes higher than 10% of the nominal workpiece speed and frequencies lower than 1 Hz. Then, the optimal parameters of continuous workpiece speed variation for chatter suppression can be predicted theoretically via semidiscretization. The application of this suppression technique has been successfully assessed for traverse cylindrical grinding.

References

References
1.
Snoeys
,
R.
, and
Brown
,
D.
,
1969
, “
Dominating Parameters in Grinding Wheel and Workpiece Regenerative Chatter
,”
Proceeding of the 10th International Machine Tool Design and Research Conference
, Manchester, UK, pp.
325
348
.
2.
Thompson
,
R. A.
,
1974
, “
On the Doubly Regenerative Stability of a Grinder
,”
ASME, J. Eng. Ind.
,
96
, pp.
275
280
.10.1115/1.3438310
3.
Takayanagi
,
K.
,
Inasaki
,
I.
, and
Yonetsu
,
S.
,
1978
, “
Regenerative Chatter Behavior During One Cycle of Cylindrical Plunge Grinding
,”
Bull. Jpn. Soc. Precis. Eng.
,
12
, pp.
121
126
.
4.
Thompson
,
R. A.
,
1986
, “
On the Double Regenerative Stability of a Grinder: The Theory of Chatter Growth
,”
ASME J. Eng. Ind. Ser. B
,
108
(
2
), pp.
75
82
.10.1115/1.3187054
5.
Inasaki
,
I.
,
Karpuschewski
,
B.
, and
Lee
,
H.
,
2001
, “
Grinding Chatter—Origin and Suppression
,”
CIRP Ann.
,
50
, pp.
515
534
.10.1016/S0007-8506(07)62992-8
6.
Li
,
H.
, and
Shin
,
Y. C.
,
2006
, “
A Time-Domain Dynamic Model for Chatter Prediction of Cylindrical Plunge Grinding Processes
,”
J. Manuf. Sci. Eng.
,
128
, pp.
404
415
.10.1115/1.2118748
7.
Oliveira
,
J. F. G.
,
Franca
,
T. V.
, and
Wang
,
J. P.
,
2008
, “
Experimental Analysis of Wheel/Workpiece Dynamic Interactions in Grinding
,”
CIRP Ann.
,
57
, pp.
329
332
.10.1016/j.cirp.2008.03.096
8.
Marinescu
,
I. D.
,
Hitchiner
,
M.
,
Uhlmann
,
E.
,
Rowe
,
W. B.
, and
Inasaki
,
I.
,
2006
,
Handbook of Machining With Grinding Wheels
,
CRC Press
,
Boca Raton, FL
.
9.
Marinescu
,
I. D.
,
Rowe
,
W. B.
,
Dimitrov
,
B.
, and
Ohmori
,
H.
,
2013
,
Tribology of Abrasive Machining Processes
,
2nd ed.
, William Andrews, Norwich, NY, pp.
313
332
.
10.
Shinuzu
,
T.
, and
Inasaki
,
I.
,
1978
, “
Regenerative Chatter During Cylindrical Traverse Grinding
,”
Bull. JSME
,
21
(
152
), pp.
317
323
.10.1299/jsme1958.21.317
11.
Frost
,
M.
,
1986
, “
Helix Ratio Control in Cylindrical Traverse Grinding
,”
ASME Production Engineering Division PED
, Vol.
16
,
New Yor
k.
12.
Weck
,
M.
, and
Hennes
,
N.
,
1997
, “
Dynamisches Prozessverhalten beim Aussenrundlangsschleifen. Jahrbuch Schleifen
,”
Honen, Lappen und Polieren
, Vol.
58
,
Ausgabe, Vulkan-Verlag
,
Essen, Germany
.
13.
Weck
,
M.
,
Hennes
,
N.
, and
Schulz
,
A.
,
2001
, “
Dynamic Behaviour of Cylindrical Traverse Grinding Processes
,”
CIRP Ann.
,
50
(
1
), pp.
213
216
.10.1016/S0007-8506(07)62107-6
14.
Rudrapati
,
R.
,
Pal
,
P. K.
, and
Bandyopadhyay
,
A.
,
2011
, “
Vibration in Traverse Cut Cylindrical Grinding-Experiments and Analysis
,”
Adv. Mater. Res.
,
264
, pp.
1124
1129
.10.4028/www.scientific.net/AMR.264-265.1124
15.
Yan
,
Y.
, and
Xu
,
J.
,
2012
, “
Stability Analysis of a Traverse Cylindrical Grinding Process
,”
Adv. Mater. Res.
,
479
, pp.
1190
1193
.10.4028/www.scientific.net/AMR.479-481.1190
16.
Liu
,
Z.
, and
Payre
,
G.
,
2007
, “
Stability Analysis of Doubly Regenerative Cylindrical Grinding Process
,”
J. Sound Vib.
,
301
, pp.
950
962
.10.1016/j.jsv.2006.10.041
17.
Chung
,
K.W.
, and
Liu
,
Z.
,
2011
, “
Nonlinear Analysis of Chatter Vibration in a Cylindrical Transverse Grinding Process With Two Time Delays Using a Nonlinear Time Transformation Method
,”
Nonlinear Dyn.
,
66
, pp.
441
456
.10.1007/s11071-010-9924-y
18.
Bartalucci
,
B.
, and
Lisini
,
G. G.
,
1969
, “
Grinding Process Instability
,”
ASME J. Eng. Ind.
,
91
(
3
), pp.
597
606
.10.1115/1.3591635
19.
Inasaki
,
I.
, and
Yonetsu
,
S.
,
1977
, “
Regenerative Chatter in Grinding
,”
Proceedings of the 18th MTDR Conference
, pp.
423
429
.
20.
Cegrell
,
G.
,
1973
, “
Variable Wheel Speed—A Way to Increase the Metal Removal Rate
,”
Proceedings of the 14th MTDR Conference
, pp.
653
658
.
21.
Kounosu
,
K.
,
1976
, “
Suppression of Chatter Vibration in Cylindrical Grinding
,”
Bull. Jpn. Soc. Precis. Eng.
,
10
(
4
), pp.
175
176
.
22.
Gallemaers
,
J. P.
,
Yegenoglu
,
K.
, and
Vatovez
,
C.
,
1986
, “
Optimizing Grinding Efficiency With Large Diameter CBN Wheels
,”
International Grinding Conference
, June, Philadelphia, SME 86–644.
23.
Barrenetxea
,
D.
,
Marquinez
,
J. I.
,
Bediaga
,
I.
, and
Uriarte
,
L.
,
2009
, “
Continuous Workpiece Speed Variation (CWSV): Model Based Practical Application to Avoid Chatter in Grinding
,”
CIRP Ann.
,
58
(
1
), pp.
319
322
.10.1016/j.cirp.2009.03.047
24.
Alvarez
,
J.
,
Barrenetxea
,
D.
,
Marquinez
,
J. I.
,
Bediaga
,
I.
, and
Gallego
,
I.
,
2011
, “
Effectiveness of Continuous Workpiece Speed Variation (CWSV) for Chatter Avoidance in Throughfeed Centerless Grinding
,”
Int. J. Mach. Tools Manuf.
,
51
, pp.
911
917
.10.1016/j.ijmachtools.2011.08.005
25.
Gallego
,
I.
,
2007
, “
Intelligent Centerless Grinding: Global Solution for Process Instabilities and Optimal Cycle Design
,”
CIRP Ann.
,
56
, pp.
347
352
.10.1016/j.cirp.2007.05.080
26.
Barrenetxea
,
D.
,
Alvarez
,
J.
,
Marquinez
,
J. I.
,
Madariaga
,
J.
, and
Muguerza
,
I.
,
2010
, “
New Models and Global Stability Charts to Avoid Principal Instabilities and Constraints in Throughfeed Centerless Grinding
,”
ASME J. Manuf. Sci. Eng.
,
132
, pp.
1
7
.10.1115/1.4000931
27.
Inamura
,
T.
, and
Sata
,
T.
,
1974
, “
Stability Analysis of Cutting Under Varying Spindle Speed
,”
Ann. CIRP
,
23
(
1
), pp.
119
120
.
28.
Sexton
,
J. S.
, and
Stone
,
B. J.
,
1978
, “
The Stability of Machining With Continuously Varying Spindle Speed
,”
Ann. CIRP
,
27
(
1
), pp.
312
326
.
29.
Altintas
,
Y.
, and
Chan
,
P. K.
,
1992
, “
In-Process Detection and Suppression of Chatter in Milling
,”
Int. J. Mach. Tools Manuf.
,
32
(
3
), pp.
329
347
.10.1016/0890-6955(92)90006-3
30.
Tsao
,
T. C.
,
McCarthy
,
M. W.
, and
Kapoor
,
S. G.
,
1993
, “
A New Approach to Stability Analysis of Variable Speed Machining Systems
,”
Int. J. Mach. Tools Manuf.
,
33
(
6
), pp.
791
808
.10.1016/0890-6955(93)90038-V
31.
Sastry
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2002
, “
Floquet Theory Based Approach for Stability Analysis of the Variable Speed Face-Milling Process
,”
J. Manuf. Sci. Eng.
,
124
, pp.
10
17
.10.1115/1.1418695
32.
Insperger
,
T.
,
Mann
,
B.
,
Stépán
,
G.
, and
Bayly
,
P.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
25
34
.10.1016/S0890-6955(02)00159-1
33.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization
,”
Int. J. Vib. Control
,
10
, pp.
1835
1855
.10.1177/1077546304044891
34.
Zatarain
,
M.
,
Bediaga
,
I.
,
Muñoa
,
J.
, and
Lizarralde
,
R.
,
2008
, “
Stability of Milling Processes With Continuous Spindle Speed Variation: Analysis in the Frequency and Time Domains, and Experimental Correlation
,”
CIRP Ann.
,
57
(
1
), pp.
379
384
.10.1016/j.cirp.2008.03.067
35.
Ramos
,
J.
,
1998
, “
Caracterización del comportamiento dinámico de máquinas-herramienta. Aplicación al rectificado cilíndrico de exteriores en penetración y al fresado frontal vertical
,” Ph.D. thesis, Universidad de Navarra, San Sebastian, Spain.
36.
Bediaga
,
I.
,
2009
, “
Supresión del chatter regenerativo mediante variación en proceso de la velocidad de giro
,” Ph.D. thesis, Escuela Superior de Ingenieros, Bilbao, Spain.
You do not currently have access to this content.