The extrusion process for aqueous-based ceramic pastes is complex due to the non-Newtonian behavior of these pastes. In this study, the extrusion process is modeled by characterizing the ceramic paste viscosity using a modified Herschel–Bulkley model. The steady-state relationship between plunger velocity and extrusion force is built based on this viscosity model and the Navier–Stokes equations. The influence of air, which may be trapped in the paste during the paste preparation and loading processes, is also examined as it significantly affects the dynamic response of the extrusion force. Combining these effects with the steady-state extrusion model, a constitutive law for the extrusion process of aqueous-based ceramic pastes is created. Because of the compressibility introduced by the trapped air, the dynamic response of the extrusion force is described by a first-order nonlinear equation when plunger velocity is taken as an input. It is shown that the extrusion response time depends on the amount of air in the extruder and the magnitude of the extrusion force. Air bubble release, a phenomenon that causes the extrusion force to suddenly drop due to the change of paste volume in the nozzle, is analyzed based on the developed constitutive model.

References

References
1.
Huang
,
T.
,
Mason
,
M. S.
,
Hilmas
,
G. E.
, and
Leu
,
M. C.
,
2006
, “
Freeze-Form Extrusion Fabrication of Ceramic Parts
,”
Virtual Phys. Prototyping
,
1
(
2
), pp.
93
100
.10.1080/17452750600649609
2.
Mason
,
M. S.
,
Huang
,
T.
,
Landers
,
R. G.
,
Leu
,
M. C.
, and
Hilmas
,
G. E.
,
2009
, “
Aqueous-Based Extrusion of High Solids Loading Ceramic Pastes: Process Modeling and Control
,”
J. Mater. Process. Technol.
,
209
, pp.
2946
2957
.10.1016/j.jmatprotec.2008.07.004
3.
Zhao
,
X.
Landers
,
R. G.
, and
Leu
,
M. C.
,
2010
, “
Adaptive Extrusion Force Control of Freeze-Form Extrusion Fabrication Processes
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
065504
.10.1115/1.4003009
4.
Benbow
,
J. J.
,
Lawson
,
T. A.
,
Oxley
,
E. W.
, and
Bridgwater
,
J.
,
1989
, “
Prediction of Paste Extrusion Pressure
,”
Am. Ceram. Soc. Bull.
,
68
, pp.
1821
1824
.
5.
Padmanabhan
,
M.
, and
Bhattacharya
,
M.
,
1989
, “
Analysis of Pressure Drop in Extruder Dies
,”
J. Food Sci.
,
54
, pp.
709
713
.10.1111/j.1365-2621.1989.tb04687.x
6.
Li
,
Y. Y.
, and
Bridgwater
,
J.
,
2000
, “
Prediction of Extrusion Pressure Using an Artificial Neural Network
,”
Powder Technol.
,
108
(
1
), pp.
65
73
.10.1016/S0032-5910(99)00254-5
7.
Shepard
,
T.
,
Nisaratanaporn
,
E.
, and
McShane
,
H. B.
,
1998
, “
Material Flow and Pressure Prediction When Extruding Through Bridge Dies
,”
Z. Metallkd.
,
89
, pp.
327
337
.
8.
Horrobin
,
D. J.
, and
Nedderman
,
R. M.
,
1998
, “
Die Entry Pressure Drops in Paste Extrusion
,”
Chem. Eng. Sci.
,
53
(
18
), pp.
3215
3225
.10.1016/S0009-2509(98)00105-5
9.
Lang
,
U.
, and
Michaeli
,
W.
,
1998
, “
Development of a Mathematical Model for the Calculation of the Pressure Drop in Extrusion Dies
,”
J. Reinf. Plast. Compos.
,
17
, pp.
1110
1118
.10.1002/vnl.10013
10.
Smay
,
J. E.
,
Cesarano
,
J.
, and
Lewis
,
J. A.
,
2002
, “
Colloidal Inks for Directed Assembly of 3-D Periodic Structures
,”
Langmuir
,
18
(
14
), pp.
5429
5437
.10.1021/la0257135
11.
Herschel
,
W.
, and
Bulkley
,
R.
,
1926
, “
Measurement of Consistency as Applied to Rubber Benzene Solutions
,”
Proc. Am. Soc. Testing Mater.
,
26
(
82
), pp.
621
629
.
12.
Chilton
,
R. A.
, and
Stainsby
,
R.
,
1998
, “
Pressure Loss Equations for Laminar and Turbulent Non-Newtonian Pipe Flow
,”
J. Hydraul. Eng.
,
124
(
5
), pp.
522
529
.10.1061/(ASCE)0733-9429(1998)124:5(522)
13.
Oakes
,
T.
,
Kulkarni
,
P.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2009
, “
Development of Extrusion-on-Demand for Ceramic Freeze-Form Extrusion Fabrication
,”
Proceedings of Solid Freeform Fabrication Symposium
, Laboratory for Freeform Fabrication, Austin, TX, pp.
206
218
.
14.
Zhu
,
C.
, and
Smay
,
J. E.
,
2011
, “
Thixotropic Rheology of Concentrated Alumina Colloidal Gels for Solid Freeform Fabrication
,”
J. Rheol.
,
55
(
3
), pp.
655
672
.10.1122/1.3573828
15.
ansys fluent 12.0 Documentation, Ansys, Inc., Canonsburg, PA.
You do not currently have access to this content.