The bonding of dissimilar materials is of primary importance to the automotive industry as it enables designers the freedom to choose from a wide variety of low density materials such as aluminum and magnesium. However, when two dissimilar materials (e.g., aluminum-to-steel) are bonded by curing at elevated temperatures, residual stresses result upon cooling the layered material system to room temperature. Problems such as distortion and fracture of adhesive often emerge in bonding of these dissimilar materials for automotive applications. In this study, the transient distortion of riveted and rivet-bonded aluminum AA6061-T6-to-steels during the curing process was investigated using the photographic method. The influences of temperature, adhesive properties, adherend thickness, adherend strength, and the presence of constraints on the transient distortion and adhesive fracture were evaluated. The peak curing temperature was found to play the most important role in distortion and adhesive fracture, followed by the influence of adherends thickness. In contrast, the other parameters studied such as the adhesive strength, constraints' type, and adherend strength produced a limited effect on distortion. The results provide useful information about vehicle body structure's design in reducing the curing induced distortion.

References

References
1.
Irving
B.
,
1995
, “
Building Tomorrow’s Automobiles
,”
Weld. J.
,
74
(
8
), pp.
29
34
.
2.
Nolting
,
A. E.
,
Underhill
,
P. R.
, and
DuQuesnay
,
D. L.
,
2008
, “
Variable Amplitude Fatigue of Bonded Aluminum Joints
,”
Int. J. Fatigue
,
30
(
1
), pp.
178
187
.10.1016/j.ijfatigue.2007.01.027
3.
Imanaka
,
M.
,
Haraga
,
K.
, and
Nishikawa
,
T.
,
1995
, “
Fatigue Strength of Adhesive/Rivet Combined Lap Joints
,”
J. Adhes.
,
49
(
3–4
), pp.
197
209
.10.1080/00218469508014356
4.
Ryazantsev
,
V. I.
,
Fedoseev
,
V. A.
, and
Shavyrin
,
V. N.
,
1980
, “
Fatigue Endurance of Welded Joints Under Variable Amplitude Loading
,”
Strength Mater
,
12
(
8
), pp.
1025
1028
.10.1007/BF00770533
5.
Noh
,
B.-I.
,
Yoon
,
J.-W.
, and
Jung
,
S.-B.
,
2010
, “
Effect of Laminating Parameters on the Adhesion Property of Flexible Copper Clad Laminate With Adhesive Layer
,”
Int. J. Adhes. Adhes.
,
30
(
1
), pp.
30
35
.10.1016/j.ijadhadh.2009.07.001
6.
Wu
,
X.
, and
Hao
,
H.
,
2005
, “
The Effect of Adhesive Curing Condition on Bonding Strength in Auto Body Assembly
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
411
419
.10.1115/1.1870014
7.
Sha
,
C.-H.
, and
Lee
,
C. C.
,
2011
, “
Low Temperature Solid State Gold Bonding of Si Chips to Alumina Substrates
,”
J. Electron. Packag.
,
133
(
2
), p.
021003
.10.1115/1.4003868
8.
Lin
,
F.
, and
Sun
,
W.
,
2001
, “
Warping Analysis in Laminated Object Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
739
746
.10.1115/1.1403447
9.
Ioka
,
S.
,
Masuda
,
K.
, and
Kubo
,
S.
,
2007
, “
Singular Stress Field Near the Edge of Interface of Bonded Dissimilar Materials With an Interlayer
,”
Int. J. Solids Struct.
,
44
(
18–19
), pp.
6232
6238
.10.1016/j.ijsolstr.2007.02.024
10.
Sopoušek
,
J.
, and
Foret
,
R.
,
2008
, “
More Sophisticated Thermodynamic Designs of Welds Between Dissimilar Steels
,”
Sci. Technol. Weld. Joining
,
13
(
1
), pp.
17
24
.10.1179/174329307X213918
11.
Fernholz
,
K. D.
,
2013
, “
Quantifying the Visibility of Surface Distortions in Class ‘A’ Automotive Exterior Body Panels
,”
ASME J. Manuf. Sci. Eng.
,
135
(
1
), p.
011001
.10.1115/1.4007984
12.
Robert Humfeld
,
G.
, and
Dillard
,
D. A.
,
1998
, “
Residual Stress Development in Adhesive Joints Subjected to Thermal Cycling
,”
J. Adhes.
,
65
(
1–4
), pp.
277
306
.10.1080/00218469808012250
13.
da Silva
,
L. F. M.
, and
Adams
,
R. D.
,
2007
, “
Adhesive Joints at High and Low Temperatures Using Similar and Dissimilar Adherends and Dual Adhesives
,”
Int. J. Adhes. Adhes.
,
27
(
3
), pp.
216
226
.10.1016/j.ijadhadh.2006.04.002
14.
da Silva
,
L. F. M.
, and
Adams
,
R. D.
,
2006
, “
Stress-Free Temperature in a Mixed-Adhesive Joint
,”
J. Adhes. Sci. Technol.
,
20
(
15
), pp.
1705
1726
.10.1163/156856106779024436
15.
Stango
,
R. J.
, and
Wang
,
S. S.
,
1984
, “
Process-Induced Residual Thermal Stresses in Advanced Fiber-Reinforced Composite Laminates
,”
ASME J. Manuf. Sci. Eng.
,
106
(
1
), pp.
48
54
.10.1115/1.3185910
16.
Suhir
,
E.
,
2009
, “
Predictive Analytical Thermal Stress Modeling in Electronics and Photonics
,”
Appl. Mech. Rev.
,
62
(
4
), p.
040801
.10.1115/1.3077136
17.
Wang
,
J.
, and
Zeng
,
S.
,
2008
, “
Thermal Stresses Analysis in Adhesive/Solder Bonded Bimaterial Assemblies
,”
J. Appl. Phys.
,
104
(
11
), p.
113508
.10.1063/1.3021357
18.
Suhir
,
E.
,
2001
, “
Predicted Thermal Stresses in a Bimaterial Assembly Adhesively Bonded at the Ends
,”
J. Appl. Phys.
,
89
(
1
), pp.
120
129
.10.1063/1.1331655
19.
Xiaoyan
,
W.
, and
Shuang
,
Z.
,
2011
, “
Analytical Model of Thermal Stress Distribution of Bonded Structure Under Temperature Field
,”
Int. J. Adhes. Adhes.
,
31
(
6
), pp.
398
401
.10.1016/j.ijadhadh.2011.03.005
20.
Sun
X.
, and
Khaleel
M. A.
,
2007
, “
Dynamic Strength Evaluations for Self-Piercing Rivets and Resistance Spot Welds Joining Similar and Dissimilar Metals
,”
Int. J. Impact Eng.
,
34
(
2007
), pp.
1668
1682
.10.1016/j.ijimpeng.2006.09.092
21.
Baljon
,
A. R.
,
1996
, “
Energy-Dissipation During Rupture of Adhesive Bonds
,”
Science
,
271
(
5248
), pp.
482
–484.10.1126/science.271.5248.482
You do not currently have access to this content.