The 5-axis tool positioning strategy named rotary contact method (RCM) for sculptured surfaces machining has been developed in our previous paper (Fan et al., 2012, “Rotary Contact Method for 5-Axis Tool Positioning,” Trans. ASME J. Manuf. Sci. Eng., 134(2), p. 021004). The RCM finds the optimal tool positions by rotating the tool backward based on the offset surface, and can generate big machined strip width. However, the RCM can only guarantee a contact point because of the design surface's geometric asymmetry in most cases, which leads to the poor surface quality. To resolve this problem, the improved rotary contact method (IRCM) is developed in this paper. The parametric equation of the circular curve of the toroidal cutter defined by the backward and the sideward tilt angle of the tool is strictly deduced. According to the nested optimization of the two tool's angles, there are two contact points found between the tool's cutting surface and the design surface around the feed direction without gouging. Tool positions investigation, machining simulation and cutting experiment are all performed based on a test surface. The results verify the correctness and effectiveness of the IRCM and show that the IRCM can apparently improve the surface quality compared to the RCM.

References

References
1.
Vickers
,
G. W.
, and
Quan
,
K. W.
,
1989
, “
Ball-Mills versus End-Mills for Curved Surface Machining
,”
ASME J. Eng. Ind.
,
111
(
22
), pp.
22
26
.10.1115/1.3188728
2.
Jensen
,
C. G.
, and
Anderson
,
D. C.
,
1993
, “
Accurate Tool Placement and Orientation for Finished Surface Machining
,”
J. Des. Manuf.
,
3
(
4
), pp.
251
261
.
3.
Jensen
,
C. G.
,
Anderson
,
D. C.
, and
Mullins
,
S. H.
,
1993
, “
Scallop Elimination Based on Precise 5-Axis Tool Placement, Orientation, and Step-Over Calculations
,”
ASME Adv. Des. Autom.
,
65
(
2
), pp.
535
544
.
4.
Rao
,
N.
,
Bedi
,
S.
, and
Buchal
,
R.
,
1996
, “
Implementation of the Principal-Axis Method for Machining of Complex Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
11
, pp.
249
257
.10.1007/BF01351282
5.
Rao
,
N.
,
Ismail
,
F.
, and
Bedi
,
S.
,
1997
, “
Tool Path Planning for Five-Axis Machining Using the Principal Axis Method
,”
Int. J. Mach. Tools Manuf.
,
37
(
7
), pp.
1025
1040
.10.1016/S0890-6955(96)00046-6
6.
Lee
,
Y. S.
,
1997
, “
Admissible Tool Orientation Control of Gouging Avoidance for 5-Axis Complex Surface Machining
,”
Comput.-Aided Des.
,
29
(
7
), pp.
507
521
.10.1016/S0010-4485(97)00002-X
7.
Wang
,
X. C.
,
Li
,
Y. B.
,
Ghosh
,
S. K.
, and
Wu
,
X. T.
,
1993
, “
Curvature Catering—A New Approach in Manufacturing of Sculptured Surface (Part1.Theorem)
,”
J. Mater. Process. Technol.
,
38
(
1-2
), pp.
159
176
.10.1016/0924-0136(93)90194-B
8.
Wang
,
X. C.
,
Li
,
Y. B.
,
Ghosh
,
S. K.
, and
Wu
,
X. T.
,
1993
, “
Curvature Catering—A New Approach in Manufacturing of Sculptured Surface (Part2.Methodolody)
,”
J. Mater. Process. Technol.
,
38
(
1-2
), pp.
177
194
.10.1016/0924-0136(93)90195-C
9.
Li
,
F.
,
Wang
,
X. C.
,
Ghosh
,
S. K.
, and
Kong
,
D. Z.
,
1995
, “
Gouge Detection and Tool Position Modification for Five-Axis NC Machining of Sculptured Surfaces
,”
J. Mater. Process. Technol.
,
48
, pp.
739
745
.10.1016/0924-0136(94)01716-E
10.
Li
,
F.
,
Wang
,
X. C.
,
Ghosh
,
S. K.
, and
Kong
,
D. Z.
,
1995
, “
Tool-Path Generation for Machining Sculptured Surfaces
,”
J. Mater. Process. Technol.
,
48
, pp.
811
816
.10.1016/0924-0136(94)01725-G
11.
Warkentin
,
A.
,
Bedi
,
S.
, and
Ismail
,
F.
,
1995
, “
5-axis Milling of Spherical Surfaces
,”
Int. J. Mach. Tools Manuf.
,
36
(
2
), pp.
229
243
.10.1016/0890-6955(95)98763-W
12.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
,
1998
, “
Intersection Approach to Multi-Point Machining of Sculptured Surfaces
,”
Comput. Aided Geom. Des.
,
15
(
6
), pp.
567
584
.10.1016/S0167-8396(97)00039-3
13.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2000
, “
Multi-Point Tool Positioning Strategy for 5-Axis Machining of Sculptured Surfaces
,”
Comput. Aided Geom. Des.
,
17
(
1
), pp.
83
100
.10.1016/S0167-8396(99)00040-0
14.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2000
, “
Comparison Between Multi-Point and Other 5-Axis Tool Position Strategies
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
185
208
.10.1016/S0890-6955(99)00058-9
15.
Engeli
,
M.
,
Waldvogel
,
J.
, and
Schnider
,
T.
,
2002
, “
Method for Processing Work Pieces by Removing Material
,” U.S. Patent No. US 6,485,236[P].
16.
Gray
,
P.
,
Bedi
,
S.
, and
Ismail
,
F.
,
2003
, “
Rolling Ball Method for 5-Axis Surface Machining
,”
Comput.-Aided Des.
,
35
(
4
), pp.
347
357
.10.1016/S0010-4485(02)00056-8
17.
Gray
,
P.
,
Bedi
,
S.
, and
Ismail
,
F.
,
2005
, “
Arc-Intersect Method for 5-Axis Tool Positioning
,”
Comput.-Aided Des.
,
37
(
7
), pp.
663
674
.10.1016/j.cad.2004.08.006
18.
Gray
,
P.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2007
, “
Arc-Intersect Method for 31122-Axis Tool Paths on a 5-Axis Machine
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
182
190
.10.1016/j.ijmachtools.2006.01.023
19.
Fan
,
W. G.
,
Wang
,
X. C.
,
Cai
,
Y. L.
, and
Jiang
,
H.
,
2012
, “
Rotary Contact Method for 5-Axis Tool Positioning
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
),
p
. 021004.10.1115/1.4005792
20.
Xu
,
R. F.
,
Chen
,
Z. T.
,
Chen
,
W. Y.
,
Wu
,
X. Z.
, and
Zhu
,
J. J.
,
2010
, “
Dual Drive Curve Tool Path Planning Method for 5-Axis NC Machining of Sculptured Surfaces
,”
Chin. J. Aeronaut.
,
23
(
4
), pp.
486
494
.10.1016/S1000-9361(09)60245-4
21.
Lee
,
Y. S.
,
1998
, “
Non-Isoparametric Tool Path Planning by Machining Strip Evaluation for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
,
30
(
7
), pp.
559
570
.10.1016/S0010-4485(98)00822-7
You do not currently have access to this content.