Standalone throughput (SAT) of a single station is one of the most widely used performance indexes in industry due to its clear definition, ease of evaluation and the ability to provide a guidance for continuous improvement in production systems. A complex multistage manufacturing system is typically segmented into several subsystems for efficient local management. It is important to evaluate performance of each subsystem to improve overall system productivity. However, the definition of standalone throughput of a production subsystem is not as clear as for a single station in current literatures or in practice, not to say an effective evaluation method. This paper deals with the standalone throughput of a serial production line segment. The definition and implication of standalone throughput of a line segment is discussed. A data driven method is developed based on online production data and is proved analytically under a practical assumption. In addition, the method is verified through simulation case studies to be an accurate and fast estimation of the standalone throughput of a production line segment.

References

References
1.
Hopp
,
W. J.
, and
Simon
,
J. T.
,
1993
, “
Estimating Throughput in an Unbalanced Assembly-Like Flow System
,”
Int. J. Prod. Res.
,
31
(
4
), pp.
4851
4868
.10.1080/00207549308956762
2.
Wallac
,
H.
, and
Mark
,
S.
,
2000
,
Factory Physics
,
2nd ed.
,
McGraw-Hill/Irwin
,
New York
.
3.
Koenigsberg
,
E.
,
1959
, “
Production Line and Internal Storage–A Review
,”
Manage. Sci.
,
5
(
4
), pp.
410
433
.10.1287/mnsc.5.4.410
4.
Buxey
,
G. M.
,
Slack
,
N. D.
, and
Wild
,
R.
,
1973
, “
Production Flow Line Systems Design—A Review
,”
AIIE Trans.
,
5
(
1
), pp.
37
48
.10.1080/05695557308974880
5.
Blumenfeld
,
D. E.
, and
Li
,
J. S.
,
2005
, “
An Analytical Formula for Throughput of A Production Line With Identical Stations and Random Failures
,”
Math. Probl. Eng.
,
2005
(
3
), pp.
293
308
.10.1155/MPE.2005.293
6.
Buzacott
,
J. A.
, and
Hanifin
,
L. E.
,
1978
, “
Models of Automatic Transfer Lines With Inventory Banks: A Review and Comparison
,”
AIIE Trans.
,
10
(
2
), pp.
197
207
.10.1080/05695557808975204
7.
Govil
,
M. C.
, and
Fu
,
M. C.
,
1996
, “
Queueing Theory in Manufacturing: A Survey
,”
J. Manuf. Syst.
,
18
(
3
), pp.
214
240
.10.1016/S0278-6125(99)80033-8
8.
Alden
,
J. M.
,
Burns
,
L. D.
,
Costy
,
T.
,
Hutton
,
R. D.
,
Jackson
,
C. A.
,
Kim
,
D. S.
,
Kohls
,
K. A.
,
Owen
,
J. H.
,
Turnquist
,
M. A.
, and
Vander Veen
,
D. J.
,
2006
, “
General Motors Increases Its Production Throughput
,”
Interfaces
,
36
(
1
), pp.
6
25
.10.1287/inte.1050.0181
9.
Tjahjono
,
B.
, and
Fernandez
,
R.
,
2008
, “
Practical Approach to Experimentation in a Simulation Study
,”
Proceedings of the Winter Simulation Conference
, pp.
1981
1988
.
10.
Schruben
,
L.
,
2000
, “
Mathematical Programming Models of Discrete Event System Dynamics
,”
Proceedings of the 2000 Winter Simulation Conference
, Vol.
1
, pp.
381
385
.
11.
Koturiak
,
J.
, and
Gregor
,
M.
,
1999
, “
Simulation in Production System Life Cycle
,”
Comput Ind.
,
38
(
2
), pp.
159
172
.10.1016/S0166-3615(98)00116-X
12.
Fowler
,
J. W.
, and
Rose
,
O.
,
2004
, “
Grand Challenges in Modeling and Simulation of Complex Manufacturing Systems
,”
Simulation
,
80
(
9
), pp.
469
476
.10.1177/0037549704044324
13.
Franz
,
L. S.
,
1989
, “
Data Driven Modeling: An Application in Scheduling
,”
Decision Sci.
,
20
(
2
), pp.
359
377
.10.1111/j.1540-5915.1989.tb01884.x
14.
Slotwinski
,
J. A.
, and
Tilove
,
R. B.
,
2006
, “
Smart Assembly: Industry Needs and Technical Challenges
,”
Proceeding PerMIS'07 Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems
, pp.
257
262
.
15.
Heilala
,
J.
,
Helaakoski
,
H.
, and
Peltomaa
,
I.
,
2008
, “
Smart Assembly-Data and Model Driven
,”
Int. Fed. Inf. Process.
,
260
(
2008
), pp.
371
381
.10.1007/978-0-387-77405-3
16.
Lee
,
S.
,
Cho
,
H.
, and
Jung
,
M.
,
2000
, “
A Conceptual Framework for the Generation of Simulation Models From Process Plans and Resource Configuration
,”
Int. J. Prod. Res.
,
38
(
4
), pp.
811
828
.10.1080/002075400189167
17.
Das
,
S. R.
,
2000
, “
Adaptive Protocols for Parallel Discrete Event Simulation
,”
J. Oper. Res. Soc.
,
51
(
4
), pp.
385
394
.
18.
Fujimoto
,
R. M.
,
2000
,
Parallel and Distributed Simulation Systems
,
John Wiley & Sons Inc.
,
New York
.
19.
Li
,
J.
,
Blumenfeld
,
D. E.
,
Huang
,
N.
, and
Alden
,
J. M.
,
2009
, “
Throughput Analysis of Production Systems: Recent Advances and Future Topics
,”
Int. J. Prod. Res.
,
47
, pp.
3823
3851
.10.1080/00207540701829752
20.
Choong
,
Y. F.
, and
Gershwin
,
S. B.
,
1987
, “
A Decomposition Method for the Approximate Evaluation of Capacitated Transfer Lines With Unreliable Machines and Random Processing Times
,”
IIE Trans.
,
19
, pp.
150
159
.10.1080/07408178708975381
21.
Gershwin
,
S. B.
,
1987
, “
An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues With Finite Storage Space and Blocking
,”
Oper. Res.
,
35
, pp.
291
305
.10.1287/opre.35.2.291
22.
Gershwin
,
S. B.
,
1987
, “
Representation and Analysis of Transfer Lines With Machines That Have Different Processing Rates
,”
Ann. Oper. Res.
,
9
, pp.
511
530
.10.1007/BF02054752
23.
Jacobs
,
D. A.
, and
Meerkov
,
S. M.
,
1995
, “
A System-Theoretic Property of Serial Production Lines: Improvability
,”
Int. J. Syst. Sci.
,
26
, pp.
95
137
.10.1080/00207729508929067
24.
Jacobs
,
D. A.
, and
Meerkov
,
S. M.
,
1995
, “
Mathematical Theory of Improvability for Production Systems
,”
Math. Probl. Eng.
,
1
, pp.
95
137
.10.1155/S1024123X9500010X
25.
Jacobs
,
D. A.
, and
Meerkov
,
S. M.
,
1995
, “
System-Theoretic Analysis of Due-Time Performance in Production Systems
,”
Math. Probl. Eng.
,
1
, pp.
225
243
.10.1155/S1024123X95000147
26.
Buzacott
,
J. A.
, and
Shantikumar
,
J. G.
,
1993
,
Stochastic Models of Manufacturing Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
27.
Altiok
,
T.
,
1997
,
Performance Analysis of Manufacturing Systems
,
Springer
,
Berlin
.
28.
Sevast'yanov
,
B. A.
,
1962
, “
Influence of Storage Bin Capacity on the Average Standstill Time of a Production Line
,”
Theory Probab. Math. Stat.
,
7
(
4
), pp.
429
438
.
29.
Wijingaard
,
J.
,
1979
, “
The Effect of Inter Stage Buffer Storage on Output of Two Unreliable Production Units in Series With Different Rates
,”
AIIE Trans.
,
11
(
1
), pp.
42
47
.10.1080/05695557908974399
30.
Gershwin
,
S. B.
, and
Schick
,
I. C.
,
1980
, “
Continuous Model of an Unreliable Two-Stage Material Flow System With a Finite Inter-Stage Buffer
,”
Massachusetts Institute of Technology
, Technique Report No. 1039.
31.
Chang
,
Q.
,
Ni
,
J.
,
Bandyopadhyay
,
P.
,
Biller
,
S.
, and
Xiao
,
G.
,
2007
, “
Maintenance Opportunity Planning System
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
661
668
.10.1115/1.2716713
32.
Chang
,
Q.
,
Liu
,
J.
,
Biller
,
S.
, and
Xiao
,
G.
,
2010
, “
Transient Analysis of Downtime Event in Manufacturing Systems
,”
Proceedings of the 2010 ASME International Manufacturing Science and Engineering Conference
, Vol.
2
, pp.
501
511
.
33.
Chang
,
Q.
,
Biller
,
S.
, and
Xiao
,
G.
,
2010
, “
Transient Analysis of Downtimes and Bottleneck Dynamics in Serial Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), pp.
132
141
.10.1115/1.4002562
34.
Chang
,
Q.
,
Xiao
,
G.
,
Li
,
L.
, and
Biller
,
S.
,
2011
, “
Energy Management in Manufacturing System
,”
Proceedings of the 2011 International Manufacturing Science and Engineering Conference
, Vol.
2
, pp.
119
125
.
You do not currently have access to this content.