This paper presents a time-domain semi-analytical method for stability analysis of milling in the framework of the differential quadrature method. The governing equation of milling processes taking into account the regenerative effect is formulated as a linear periodic delayed differential equation (DDE) in state space form. The tooth passing period is first separated as the free vibration duration and the forced vibration duration. As for the free vibration duration, the analytical solution is available. As for the forced vibration duration, this time interval is discretized by sampling grid points. Then, the differential quadrature method is employed to approximate the time derivative of the state function at a sampling grid point within the forced vibration duration by a weighted linear sum of the function values over the whole sampling grid points. The Lagrange polynomial based algorithm (LPBA) and trigonometric functions based algorithm (TFBA) are employed to obtain the weight coefficients. Thereafter, the DDE on the forced vibration duration is discretized as a series of algebraic equations. By combining the analytical solution of the free vibration duration and the algebraic equations of the forced vibration duration, Floquet transition matrix can be constructed to determine the milling stability according to Floquet theory. Simulation results and experimentally validated examples are utilized to demonstrate the effectiveness and accuracy of the proposed approach.

## References

1.
Budak
,
E.
,
2006
, “
Analytical Models for High Performance Milling. Part I: Cutting Forces, Structural Deformations and Tolerance Integrity
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1478
1488
.10.1016/j.ijmachtools.2005.09.009
2.
Budak
,
E.
,
2006
, “
Analytical Models for High Performance Milling. Part II: Process Dynamics and Stability
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1489
1499
.10.1016/j.ijmachtools.2005.09.010
3.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.—Manuf. Technol.
,
53
(
2
), pp.
619
642
.10.1016/S0007-8506(07)60032-8
4.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University
,
Cambridge
.
5.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2008
,
Machining Dynamics: Frequency Response to Improved Productivity
,
Springer
,
New York
.
6.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
700
707
.10.1115/1.1392994
7.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
.10.1115/1.2039102
8.
Tlusty
,
J.
, and
Ismail
,
F.
,
1981
, “
Basic Non-Linearity in Machining Chatter
,”
CIRP Ann.—Manuf. Technol.
,
30
(
1
), pp.
299
304
.10.1016/S0007-8506(07)60946-9
9.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
169
175
.10.1115/1.2899674
10.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.10.1115/1.1580852
11.
Minis
, I
.
, and
Yanushevsky
,
R.
,
1993
, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
J. Eng. Ind.
,
115
(
1
), pp.
1
8
.10.1115/1.2901633
12.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann–Manuf. Technol.
,
44
(
1
), pp.
357
362
.10.1016/S0007-8506(07)62342-7
13.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
22
30
.10.1115/1.2801317
14.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
.10.1115/1.2801318
15.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.10.1115/1.1765139
16.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.10.1115/1.1556860
17.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
,
2005
, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.10.1115/1.1948394
18.
Butcher
,
E. A.
,
Ma
,
H.
,
Bueler
,
E.
,
Averina
,
V.
, and
Szabo
,
Z.
,
2004
, “
Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
,
59
(
7
), pp.
895
922
.10.1002/nme.894
19.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
,
2009
, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031003
.10.1115/1.3124088
20.
Olgac
,
N.
, and
Sipahi
,
R.
,
2005
, “
A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
791
800
.10.1115/1.2037086
21.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.10.1002/nme.505
22.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.10.1002/nme.1061
23.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1–2
), pp.
334
341
.10.1016/j.jsv.2007.11.040
24.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-delay Systems: Stability and Engineering Applications
,
Springer-Verlag
,
New York
.
25.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.10.1016/j.ijmachtools.2010.01.003
26.
Insperger
,
T.
,
2010
, “
Full-Discretization and Semi-Discretization for Milling Stability Prediction: Some Comments
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
658
662
.10.1016/j.ijmachtools.2010.03.010
27.
Quo
,
Q.
,
Sun
,
Y.
, and
Jiang
,
Y.
,
2012
, “
On the Accurate Calculation of Milling Stability Limits Using Third-Order Full-Discretization Method
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
61
66
.10.1016/j.ijmachtools.2012.05.001
28.
Liu
,
Y.
,
Zhang
,
D.
, and
Wu
,
B.
,
2012
, “
An Efficient Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
44
48
.10.1016/j.ijmachtools.2012.07.008
29.
Li
,
M.
,
Zhang
,
G.
, and
Huang
,
Y.
,
2012
, “
Complete Discretization Scheme for Milling Stability Prediction
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
187
199
.10.1007/s11071-012-0651-4
30.
Khasawneh
,
F. A.
, and
Mann
,
B. P.
,
2011
, “
A Spectral Element Approach for the Stability of Delay Systems
,”
Int. J. Numer. Methods Eng.
,
87
(
6
), pp.
566
592
.10.1002/nme.3122
31.
Compean
,
F.
,
Olvera
,
D.
,
Campa
,
F.
,
López de Lacalle
,
L.
,
Elias-Zuniga
,
A.
, and
Rodriguez
,
C.
,
2012
, “
Characterization and Stability Analysis of a Multivariable Milling Tool by the Enhanced Multistage Homotopy Perturbation Method
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
27
33
.10.1016/j.ijmachtools.2012.01.010
32.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
.10.1115/1.4004136
33.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Milling Stability Analysis Using the Spectral Method
,”
Sci. China, Ser. E: Technol. Sci.
,
54
(
12
), pp.
3130
3136
.10.1007/s11431-011-4611-x
34.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.10.1115/1.4007622
35.
Bellman
,
R.
, and
Casti
,
J.
,
1971
, “
,”
J. Math. Anal. Appl.
,
34
(
2
), pp.
235
238
.10.1016/0022-247X(71)90110-7
36.
Bellman
,
R.
,
Kashef
,
B. G.
, and
Casti
,
J.
,
1972
, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
10
(
1
), pp.
40
52
.10.1016/0021-9991(72)90089-7
37.
Quan
,
J.
, and
Chang
,
C.
,
1989
, “
New Insights in Solving Distributed System Equations by the Quadrature Method—I. Analysis
,”
Comput. Chem. Eng.
,
13
(
7
), pp.
779
788
.10.1016/0098-1354(89)85051-3
38.
Shu
,
C.
,
1991
, “
Generalized Differential-Integral Quadrature and Application to the Simulation of Incompressible Viscous Flows Including Parallel Computation
,”
Ph.D.
thesis, University of Glasgow, Glasgow, Scotland.
39.
Shu
,
C.
,
Yao
,
Q.
, and
Yeo
,
K. S.
,
2002
, “
Block-Marching in Time With DQ Discretization: An Efficient Method for Time-Dependent Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
41–42
), pp.
4587
4597
.10.1016/S0045-7825(02)00387-0
40.
Bert
,
C. W.
, and
Malik
,
M.
,
1996
, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
Appl. Mech. Rev.
,
49
(
1
), pp.
1
28
.10.1115/1.3101882
41.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer-Verlag
,
London
.
42.
Striz
,
A.
,
Wang
,
X.
, and
Bert
,
C.
,
1995
, “
Harmonic Differential Quadrature Method and Applications to Analysis of Structural Components
,”
Acta Mech.
,
111
(
1
), pp.
85
94
.10.1007/BF01187729
43.
Fung
,
T. C.
,
2001
, “
Solving Initial Value Problems by Differential Quadrature Method—Part 1: First-Order Equations
,”
Int. J. Numer. Methods Eng.
,
50
(
6
), pp.
1411
1427
.10.1002/1097-0207(20010228)50:6<1411::AID-NME78>3.0.CO;2-O
44.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
SIAM
,
.
45.
Farkas
,
M.
,
1994
,
Periodic Motions
,
Springer-Verlag
,
New York
.
46.
Wang
,
Y.
,
2001
, “
Differential Quadrature Method and Differential Qudrature Element Method—Principle and Applications
,”
Ph.D.
dissertation, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
47.
Tweten
,
D. J.
,
Lipp
,
G. M.
,
Khasawneh
,
F. A.
, and
Mann
,
B. P.
,
2012
, “
On the Comparison of Semi-Analytical Methods for the Stability Analysis of Delay Differential Equations
,”
J. Sound Vib.
,
331
(
17
), pp.
4057
4071
.10.1016/j.jsv.2012.04.009
48.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stepan
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
35
40
.10.1016/S0890-6955(02)00160-8
49.
Henninger
,
C.
, and
Eberhard
,
P.
,
2008
, “
Improving the Computational Efficiency and Accuracy of the Semi-Discretization Method for Periodic Delay-Differential Equations
,”
Eur. J. Mech., A/Solids
,
27
(
6
), pp.
975
985
.10.1016/j.euromechsol.2008.01.006