A new engineering-driven factor analysis (EDFA) method has been developed to assist the variation source identification for multistage manufacturing processes (MMPs). The proposed method investigated how to fully utilize qualitative engineering knowledge of the spatial variation patterns to guide the factor rotation. It is shown that ideal identification can be achieved by matching the rotated factor loading vectors with the qualitative indicator vectors (IV) that are defined according to spatial variation patterns based on the design constraints. However, the random sampling variability may significantly affect the estimation of the rotated factor loading vectors, leading to the deviations from their true values. These deviations may change the matching results and cause misidentification of the actual variation sources. By using implicit differentiation approach, this paper derives the asymptotic distribution and the associated variance-covariance matrix of the rotated factor loading vectors. Therefore, by considering the effect of sample estimation variability, the variation sources identification problem is reformulated as an asymptotic statistical test of the hypothesized match between the rotated factor loading vectors and the indicator vectors. A real-world case study is provided to demonstrate the effectiveness of the proposed matching method and its robustness to the sample uncertainty.

References

1.
Shi
,
J.
,
2006
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
, p.
469
.
2.
Wolbrecht
,
E.
,
D'Ambrosio
,
B.
,
Paasch
,
R.
, and
Kirby
,
D.
,
2000
, “
Monitoring and Diagnosis of a Multistage Manufacturing Process Using Bayesian Networks
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
14
(
1
), pp.
53
67
. Available at http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=38559
3.
Ceglarek
,
D.
, and
Shi
,
J.
,
1996
, “
Fixture Failure Diagnosis for Auto Body Assembly Using Pattern Recognition
,”
ASME J. Eng. Ind.
,
118
, pp.
55
65
.10.1115/1.2803648
4.
Li
,
Z.
, and
Zhou
,
S.
,
2006
, “
Robust Method of Multiple Variation Sources Identification in Manufacturing Processes For Quality Improvement
,”
ASME J. Manuf. Sci. Eng.
,
128
, pp.
326
336
.10.1115/1.2117447
5.
Apley
,
D. W.
, and
Shi
,
J.
,
2001
, “
A Factor-Analysis Method for Diagnosing Variability in Multivariate Manufacturing Processes
,”
Technometrics
,
43
(
1
), pp.
84
95
.10.1198/00401700152404354
6.
Liu
,
J.
,
Li
,
J.
, and
Shi
,
J.
,
2005
, “
Engineering Driven Cause-Effect Modeling and Statistical Analysis for Multi-Operational Machining Process Diagnosis
,”
Trans. NAMRI/SME
,
33
, pp.
65
72
.
7.
Apley
,
D. W.
, and
Lee
,
H. Y.
,
2003
, “
Identifying Spatial Variation Patterns in Multivariate Manufacturing Processes: A Blind Separation Approach
,”
Technometrics
,
45
(
3
), pp.
187
198
.10.1198/004017003000000014
8.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
756
762
.10.1115/1.2833137
9.
Liu
,
J.
,
Jin
,
J.
, and
Shi
,
J.
,
2010
, “
State Space Modeling for 3-D Variation Propagation in Rigid-Body Multistage Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
724
735
.10.1109/TASE.2010.2050059
10.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1999
, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
124
140
.10.1109/70.744608
11.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
,
2003
, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vector
,”
IEEE Trans. Rob. Autom.
,
19
(
2
), pp.
296
309
.10.1109/TRA.2003.808852
12.
Li
,
B.
,
Yu
,
H.
,
Yang
,
X.
, and
Hu
,
Y.
,
2010
, “
Variation Analysis and Robust Fixture Design of a Flexible Fixturing System for Sheet Metal Assembly
,”
ASME J. Manuf. Sci. Eng.
,
132
(
4
), p.
041014
.10.1115/1.4002033
13.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2002
, “
Fault Diagnosis of Multistage Manufacturing Processes by Using State Space Approach
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
313
322
.10.1115/1.1445155
14.
Zhou
,
S.
,
Chen
,
Y.
, and
Shi
,
J.
,
2004
, “
Statistical Estimation and Testing for Variation Root-Cause Identification of Multistage Manufacturing Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
1
(
1
), pp.
73
83
.10.1109/TASE.2004.829427
15.
Kong
,
Z.
,
Huang
,
W.
, and
Oztekin
,
A.
,
2009
, “
Variation Propagation Analysis for Multi-Station Assembly Process With Consideration of GD&T Factors
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051010
.10.1115/1.4000094
16.
Huang
,
W.
,
Lin
,
J.
,
Bezdecny
,
M.
,
Kong
,
Z.
, and
Ceglarek
,
D.
,
2007
, “
Stream-of-Variation Modeling I: A Generic 3D Variation Model for Rigid Body Assembly in Single Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
821
831
.10.1115/1.2738117
17.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
,
2007
, “
Stream-of-Variation Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multi Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng
., 131(5),
129
(
4
), pp.
832
842
.10.1115/1.2738953
18.
Abellan-Nebot
,
J.
V
.
,
Liu
,
J.
,
Subiron
,
F. R.
, and
Shi
,
J.
,
2012
, “
State Space Modeling of Variation Propagation in Multistation Machining Processes Considering Machining-Induced Variations
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
021002
.10.1115/1.4005790
19.
Liu
,
J.
,
Shi
,
J.
, and
Hu
,
S. J.
,
2008
, “
Engineering-Driven Factor Analysis for Variation Source Identification in Multistage Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041009
.10.1115/1.2950064
20.
Kollo
,
T.
, and
Neudecker
,
H.
,
1997
, “
Asymptotics of Pearson-Hotelling Principal-Component Vectors of Sample Variance and Correlation Matrices
,”
Behaviormetrika
,
24
(
1
), pp.
51
69
.10.2333/bhmk.24.51
21.
Jin
,
N.
, and
Zhou
,
S.
,
2006
, “
Signature Construction and Matching for Fault Diagnosis in Manufacturing Processes Through Fault Space Analysis
,”
IIE Trans. Qual. Reliab. Eng.
,
38
, pp.
341
354
.10.1080/07408170500216498
22.
Lawley
,
D. N.
, and
Maxwell
,
A. E.
,
1971
,
Factor Analysis as a Statistical Method
,
Butterworths
,
London
, p.
153
.
23.
Archer
,
C. O.
, and
Jennrich
,
R.
I
.
,
1973
, “
Standard Errors for Rotated Factor Loadings
,”
Psychometrika
,
38
(
4
), pp.
581
592
.10.1007/BF02291496
24.
Jennrich
,
R.
,
1973
, “
Standard Errors for Obliquely Rotated Factor Loadings
,”
Psychometrika
,
38
(
4
), pp.
593
604
.10.1007/BF02291497
25.
Ogasawara
,
H.
,
2002
, “
Concise Formulas for the Standard Errors of Component Loading Estimates
,”
Psychometrika
,
67
(
2
), pp.
289
297
.10.1007/BF02294847
26.
Girshick
,
M. A.
,
1939
, “
On the Sampling Theory of Roots of Determinantal Equations
,”
Ann. Math. Stat.
,
10
, pp.
203
224
.10.1214/aoms/1177732180
You do not currently have access to this content.