Temperature-distribution measurements in cutting tools during the machining process are extremely difficult and remain an unresolved problem. In this paper, cutting temperature distributions were measured by thin film thermocouples (TFTCs) embedded into polycrystalline cubic boron nitride (PCBN) cutting inserts in the immediate vicinity of the tool-chip interface. The embedded TFTC array provides temperature measurements with a degree of spatial resolution (100 μm) and dynamic response (150 ns) that is not possible with currently employed methods due to the micro-scale junction size of the TFTCs. Using these measurements during hard turning, steady-state, dynamic, as well as chip morphology and formation process analyses were performed based on the cutting temperature and cutting force variations in the cutting zone. It has been shown that the temperature changes in the cutting zone depend on the shearing band location in the chip and the thermal transfer rate from the heat generation zone to the cutting tool. Furthermore, it became evident that the material flow stress and the shearing bands greatly affect not only the chip formation morphology but also the cutting temperature field distributions in the cutting zone of the cutting insert.

References

References
1.
Abukhshim
,
N. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2006
, “
Heat Generation and Temperature Prediction in Metal Cutting: A Review and Implications for High Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
782
800
.10.1016/j.ijmachtools.2005.07.024
2.
Davies
,
M. A.
,
Ueda
,
T.
,
M'saoubi
,
R.
,
Mullany
,
B.
, and
Cooke
,
A. L.
,
2007
, “
On the Measurement of Temperature in Material Removal Processes
,”
CIRP Ann.
,
56
(
2
), pp.
581
604
.10.1016/j.cirp.2007.10.009
3.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
A Review of the Experimental Techniques for the Measurement of Heat and Temperatures Generated in Some Manufacturing Processes and Tribology
,”
Tribol. Int.
,
34
(
10
), pp.
653
682
.10.1016/S0301-679X(01)00068-8
4.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6al–4v
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.10.1016/j.ijmachtools.2007.10.014
5.
Sima
,
M.
, and
Özel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti-6al-4v
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.10.1016/j.ijmachtools.2010.08.004
6.
Karpat
,
Y.
, and
Ozel
,
T.
,
2008
, “
Analytical and Thermal Modeling of High-Speed Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
),
011001
.10.1115/1.2783282
7.
Pittalà
,
G. M.
, and
Monno
,
M.
,
2011
, “
A New Approach to the Prediction of Temperature of the Workpiece of Face Milling Operations of Ti-6al-4v
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
173
180
.10.1016/j.applthermaleng.2010.08.027
8.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J.-F.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
(
11
), pp.
1187
1197
.10.1016/j.ijmachtools.2008.03.013
9.
Basti
,
A.
,
Obikawa
,
T.
, and
Shinozuka
,
J.
,
2007
, “
Tools With Built-In Thin Film Thermocouple Sensors for Monitoring Cutting Temperature
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
793
798
.10.1016/j.ijmachtools.2006.09.007
10.
Werschmoeller
,
D.
,
Ehmann
,
K.
, and
Li
,
X.
,
2011
, “
Tool Embedded Thin Film Microsensors for Monitoring Thermal Phenomena at Tool-Workpiece Interface During Machining
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
),
021007
.10.1115/1.4003616
11.
Kennedy
,
F. E.
,
Frusescu
,
D.
, and
Li
,
J. Y.
,
1997
, “
Thin Film Thermocouple Arrays for Sliding Surface Temperature Measurement
,”
Wear
,
207
(
1–2
), pp.
46
54
.10.1016/S0043-1648(96)07473-X
12.
Heichal
,
Y.
,
Chandra
,
S.
, and
Bordatchev
,
E.
,
2005
, “
A Fast-Response Thin Film Thermocouple to Measure Rapid Surface Temperature Changes
,”
Exp. Therm. Fluid Sci.
,
30
(
2
), pp.
153
159
.10.1016/j.expthermflusci.2005.05.004
13.
Shinozuka
,
J.
,
Basti
,
A.
, and
Obikawa
,
T.
,
2008
, “
Development of Cutting Tool With Built-in Thin Film Thermocouples for Measuring High Temperature Fields in Metal Cutting Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
034501
.10.1115/1.2823066
14.
Brinksmeier
,
E.
,
Heinzel
,
C.
,
Wilkens
,
A.
,
Lang
,
W.
, and
Seedorf
,
T.
,
2010
, “
Monitoring of Machining Processes Using Sensor Equipped Tools
,”
Adv. Eng. Mater.
,
12
(
7
), pp.
641
645
.10.1002/adem.200900312
15.
Hongseok
,
C.
,
Datta
,
A.
,
Xudong
,
C.
, and
Xiaochun
,
L.
,
2006
, “
Microfabrication and Characterization of Metal-Embedded Thin-Film Thermomechanical Microsensors for Applications in Hostile Manufacturing Environments
,”
J. Microelectromech. Syst.
,
15
(
2
), pp.
322
329
.10.1109/JMEMS.2006.872235
16.
Werschmoeller
,
D.
,
2010
, “
Measurement of Transient Tool Internal Temperature Fields by Novel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron Nitride Cutting Inserts
,” Ph.D. thesis,
University of Wisconsin–Madison
,
Madison, WI
.
17.
Werschmoeller
,
D.
,
Li
,
X.
, and
Ehmann
,
K.
,
2012
, “
Measurement of Transient Tool-Internal Temperature Fields During Hard Turning by Insert-Embedded Thin Film Sensors
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061004
.10.1115/1.4007621
18.
Grzesik
,
W.
,
2008
,
Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications
,
Elsevier
,
New York
.
19.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Eng. Ind.
,
103
(
1
), pp.
33
51
.10.1115/1.3184458
20.
Poulachon
,
G.
, and
Moisan
,
A. L.
,
2000
, “
Hard Turning: Chip Formation Mechanisms and Metallurgical Aspects
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
406
412
.10.1115/1.1285891
21.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
22.
Mabrouki
,
T.
, and
Rigal
,
J. F.
,
2006
, “
A Contribution to a Qualitative Understanding of Thermo-Mechanical Effects During Chip Formation in Hard Turning
,”
J. Mater. Process. Technol.
,
176
(
1–3
), pp.
214
221
.10.1016/j.jmatprotec.2006.03.159
23.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
The Mechanisms of Chip Formation in Machining Hardened Steels
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
528
535
.10.1115/1.1455643
24.
Ohbuchi
,
Y.
, and
Obikawa
,
T.
,
2003
, “
Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting
,”
ASME J. Eng. Mater. Technol.
,
125
(
3
), pp.
324
332
.10.1115/1.1590999
25.
Fang
,
N.
, and
Wu
,
Q.
,
2005
, “
The Effects of Chamfered and Honed Tool Edge Geometry in Machining of Three Aluminum Alloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
10
), pp.
1178
1187
.10.1016/j.ijmachtools.2004.12.003
26.
Atlati
,
S.
,
Haddag
,
B.
,
Nouari
,
M.
, and
Zenasni
,
M.
,
2011
, “
Analysis of a New Segmentation Intensity Ratio ‘SIR’ to Characterize the Chip Segmentation Process in Machining Ductile Metals
,”
Int. J. Mach. Tools Manuf.
,
51
(
9
), pp.
687
700
.10.1016/j.ijmachtools.2011.05.007
You do not currently have access to this content.