Laser indirect shock forming is a novel microfabrication technique to introduce 3D profiles in metallic thin films. Experiments were performed by allowing the laser-driven flyer to impact the thin film, which is placed above a micromould. The effects of laser energy and sample thickness on deformation mechanism were investigated experimentally. The experimental results show that increasing the laser energy could increase the deformation depth, but may induce fracture along the edges of the micromould when the laser energy is too high. Moreover, the target plate was completely sheared off for 10 μm copper when the pulse energy is 1200 mJ. So it can be found that the technique can also realize micro punching of metallic thin films. The transient deformation of copper foil impacted by laser-driven flyer is simulated in this paper. Experimental data obtained were then used to validate the corresponding simulation model. Good agreement has been obtained between the numerical simulation and the experiments under different laser energy. The rising temperature due to the adiabatic conditions is taken into account. And the strain distribution has been also calculated numerically.

References

1.
Gao
,
H.
,
Ye
,
C.
, and
Cheng
,
G. J.
,
2009
, “
Deformation Behaviors and Critical Parameters in Microscale Laser Dynamic Forming
,”
ASME J. Manuf. Sci. Eng.
,
131
, p.
051011
.10.1115/1.4000100
2.
Yu
,
C. J.
,
Gao
,
H.
,
Yu
,
H. Y.
,
Jiang
,
H. Y.
, and
Cheng
,
G. J.
,
2009
, “
Laser Dynamic Forming of Functional Materials Laminated Composites on Patterned Three-Dimensional Surfaces With Applications on Flexible Microelectromechanical Systems
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091108
.10.1063/1.3222863
3.
Vollertsen
,
F.
,
Niehoff
,
H. S.
, and
Wielage
,
H.
,
2009
, “
On the Acting Pressure in Laser Deep Drawing
,”
Prod. Eng.
,
3
(
1
), pp.
1
8
.10.1007/s11740-008-0135-z
4.
Liu
,
H. X.
,
Shen
,
Z. B.
,
Wang
,
X.
,
Wang
,
H.
, and
Tao
,
M.
,
2010
, “
Micromould Based Laser Shock Embossing of Thin Metal Sheets for MEMS Applications
,”
Appl. Surf. Sci.
,
256
(
14
), pp.
4687
4691
.10.1016/j.apsusc.2010.02.073
5.
Liu
,
H. X.
,
Shen
,
Z. B.
,
Wang
,
X.
, and
Wang
,
H.
,
2009
, “
Numerical Simulation and Experimentation of a Novel Laser Indirect Shock Forming
,”
J. Appl. Phys.
,
106
(
6
), p.
063107
.10.1063/1.3212992
6.
Lawrence
,
R. J.
, and
Trott
,
W. M.
,
1993
, “
Theoretical Analysis of a Pulsed Laser-Driven Hypervelocity Flyer Launcher
,”
Int. J. Impact Eng.
,
14
(
1–4
), pp.
439
449
.10.1016/0734-743X(93)90041-5
7.
Greenaway
,
M. W.
,
Proud
,
W. G.
,
Field
,
J. E.
, and
Goveas
,
S. G.
,
2003
, “
A Laser-Accelerated Flyer System
,”
Int. J. Impact. Eng.
,
29
, pp.
317
321
.10.1016/j.ijimpeng.2003.09.027
8.
Resseguier
,
T. D.
,
He
,
H.
, and
Berterretche
,
P.
,
2005
, “
Use of laser-Accelerated Foils for Impact Study of Dynamic Material Behaviour
,”
Int. J. Impact. Eng.
,
31
(
8
), pp.
945
956
.10.1016/j.ijimpeng.2004.07.003
9.
Fu
,
S. Z.
,
Gu
,
Y.
, and
Huang
,
X. G.
,
Wu
,
J.
,
He
,
J.
,
Ma
,
M.
,
Luo
,
P.
, and
Zhang
,
Y.
,
2002
, “
Experimental Investigation of Flyer Character Driven by a Laser and Increasing Pressure With the Flyer Technique
,”
Phys. Plasmas
,
9
, pp.
3201
3204
.10.1063/1.1496083
10.
Johnson
,
W.
,
1970
,
Impact Strength of Materials
,
Edward Arnold
,
London
.
11.
Liu
,
H. X.
,
Shen
,
Z. B.
,
Wang
,
X.
,
Wang
,
H.
, and
Tao
,
M.
,
2010
, “
Numerical Simulation and Experimentation of a Novel Micro Scale Laser High Speed Punching
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
491
494
.10.1016/j.ijmachtools.2010.02.003
12.
Peyre
,
P.
, and
Fabbro
,
R.
,
1995
, “
laser Shock Processing: A Review of the Physics and Applications
,”
Opt. Quantum Electron.
,
27
(
1
), pp.
1213
1229
.10.1007/BF00326477
13.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser Induced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
755
784
.10.1063/1.346783
14.
Zhang
,
W.
, and
Yao
,
Y. L.
,
2002
, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
369
378
.10.1115/1.1445149
15.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of 7th International Symposium on Ballistics
, pp.
541
547
.
16.
Poizat
,
C.
,
Campagne
,
L.
, and
Daridon
,
L.
,
2005
, “
Modeling and Simulation of Thin Sheet Blanking Using Damage and Rupture Criteria
,”
Int. J. Form. Process.
,
8
(
1
), pp.
29
47
.10.3166/ijfp.8.29-47
17.
Seth
,
M.
,
Vohnout
,
V. J.
, and
Daehn
,
G. S.
,
2005
, “
Formability of Steel Sheet in High Velocity Impact
,”
J. Mater. Process. Technol.
,
168
(
3
), pp.
390
400
.10.1016/j.jmatprotec.2004.08.032
18.
Dariani
,
B. M.
,
Liaghat
,
G. H.
, and
Gerdooei
,
M.
,
2009
, “
Experimental Investigation of Sheet Metal Formability Under Various Strain Rates
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
6
), pp.
703
712
.10.1243/09544054JEM1430
19.
Bruno
,
E. J.
,
1968
,
High-Velocity Forming of Metals
,
ASTME
,
Dearborn, MI
.
You do not currently have access to this content.