The grinding procedure and setup, the cutting edge inclination and rake angles of the needle with lancet point (NLP), and the NLP tissue insertion force are investigated in this paper. The NLP is the most commonly used needle tip geometry. However, there is a lack of research on the NLP grinding and cutting edge characteristics. In this study, a four-step grinding procedure and a mathematical model to calculate the inclination and rake angles along the cutting edge of the NLP are developed. Three cases of NLP are defined based on the relative position of the lancets. Prototype NLP for each case was produced and analyzed. Compared to the regular bias bevel needle, grinding two lancets in NLP can increases the inclination angle, particularly at the needle tip. Experiments with needle insertion into the porcine liver were conducted and results showed that NLP could achieve over 40% reduction of the initial peak needle insertion force compared to that of the regular bias bevel needle tip.

References

1.
Abolhassani
,
N.
,
Patel
,
R.
, and
Moallen
,
M.
,
2007
, “
Needle Insertion Into Soft Tissue: A Survey
,”
Med. Eng. Phys.
,
29
, pp.
413
431
.10.1016/j.medengphy.2006.07.003
2.
Kucklick
,
T.
,
2006
,
The Medical Device R&D Handbook
,
Taylor & Franics
,
London
.
3.
Towler
,
M. A.
,
McGregor
,
W.
,
Rodeheaver
,
G. T.
,
Cuttler
,
P. V.
,
Bond
,
R. F.
,
Phung
,
D.
,
Morgan
,
R. G.
,
Thacker
,
J. G.
, and
Edlich
,
R. F.
,
1988
, “
Influence of Cutting Edge Configuration on Surgical Needle Penetration Forces
,”
J. Emerg. Med.
,
6
, pp.
475
481
.10.1016/0736-4679(88)90403-9
4.
Edlich
,
R. F.
,
Thacker
,
J. G.
,
McGregor
,
W.
, and
Rodeheaver
,
G. T.
,
1993
, “
Past, Present, and Future for Surgical Needles and Needle Holders
,”
Am. J. Surg.
,
166
, pp.
522
532
.10.1016/S0002-9610(05)81147-X
5.
Huber
,
R. L.
,
1946
, “
Hypodermic Needle
,” U.S. Patent No. 2,409,979.
6.
Moore
,
J. Z.
,
Shih
,
A. J.
,
McLaughlin
,
P. W.
,
McGill
,
C. S.
,
Zhang
,
Q. H.
, and
Zheng
,
H. J.
,
2009
, “
Blade Oblique Cutting of Tissue for Investigation of Biopsy Needle Insertion
,”
Trans. NAMRI/SME
,
37
, pp.
49
56
.
7.
Moore
,
J. Z.
,
Malukhin
,
K.
,
Shih
,
A. J.
, and
Ehmann
,
K. F.
,
2011
, “
Hollow Needle Tissue Insertion Force Model
,”
CIRP Ann.
,
60
, pp.
157
160
.10.1016/j.cirp.2011.03.101
8.
Moore
,
J. Z.
,
Zhang
,
Q. H.
,
McGill
,
C. S.
,
Zheng
,
H. J.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2010
, “
Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051005
.10.1115/1.4002190
9.
Moore
,
J. Z.
,
Zhang
,
Q. H.
,
McGill
,
C. S.
,
Zheng
,
H. J.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2012
, “
Modeling Cutting Edge Geometry for Plane and Curved Needle Tips
,”
Proc. Inst. Mech. Eng., Part B
,
226
, pp.
861
891
.10.1177/0954405411432221
10.
Tai
,
B. L.
,
Wang
,
Y. C.
, and
Shih
,
A. J.
,
2013
, “
Cutting Force in Hollow Needle Insertion of Soft Tissue
,”
ASME International Manufacturing Science and Engineering Conference
, Paper No. MSEC 2013.
11.
Moore
,
J. Z.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2012
, “
Novel Needle Cutting Edge Geometry for End-Cut Biopsy
,”
Med. Phys.
,
39
, pp.
99
108
.10.1118/1.3665253
12.
Ross
,
C. F.
,
2004
, “
Hypodermic Needle
,” U.S. Patent No. 6702790.
13.
Gravlee
,
J. F.
,
1998
, “
Hypodermic Needle
,” U.S. Patent No. 5733266.
14.
O'Leary
,
M. D.
,
Simone
,
C.
,
Washio
,
T.
,
Yoshinaka
,
K.
, and
Okamura
,
A. M.
,
2003
, “
Robotic Needle Insertion: Effects of Friction and Needle Geometry
,” Proceedings of the 2003
IEEE
International Conference on Robotics and Automation (ICRA), Taipei, Taiwan.10.1109/ROBOT.2003.1241851
15.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
, pp.
1707
1716
.10.1109/TBME.2004.831542
16.
Kataoka
,
H.
,
Washio
,
T.
,
Audette
,
M.
, and
Mizuhara
,
K.
,
2001
, “
A Model for Relations Between Needle Deflection, Force, and Thickness on Needle Penetration
,” Medical Image Computing and Computer-Assisted Intervention (
MICCAI
), pp.
966
974
.10.1007/3-540-45468-3_115
17.
Podder
,
T. K.
,
Clark
,
D. P.
,
Sherman
,
J.
,
Fuller
,
D.
,
Messing
,
E. M.
,
Rubens
,
D. J.
,
Strang
,
J. G.
,
Odell
,
W.
,
Zhang
,
Y. D.
,
Ng
,
W. S.
, and
Yu
,
Y.
,
2005
, “
Effects of Tip Geometry of Surgical Needles: An Assessment of Force and Deflection
,”
Proceedings of the 3rd European Medical & Biological Engineering Conference
(EMBEC),
Singapore
.
18.
Misra
,
S.
,
Reed
,
K. B.
,
Douglas
,
A. S.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2008
, “
Needle-Tissue Interaction Forces for Bevel-Tip Steerable Needles
,” Proceedings of the 2nd
IEEE
RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2008), Scottsdale, AZ.10.1109/BIOROB.2008.4762872
19.
Shih
,
A. J.
,
Lewis
,
M. A.
, and
Strenkowski
,
J. S.
,
2004
, “
End Milling of Elastomers—Fixture Design and Tool Effectiveness for Material Removal
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
115
123
.10.1115/1.1616951
You do not currently have access to this content.