Solid carbide cylindrical end-mills are widely used in machining, and their helical flutes are crucial to their cutting performance. In industry, the flute is simply defined with four key parameters: the helical angle, the radial rake angle, the fluting angle, and the core radius, which are specified in an end-mill design. The flute shape is not fully defined, while it is often generated by a 1A1 or 1V1 diamond wheel in 2½-axis computer numerically controlled (CNC) grinding. Unfortunately, the two simple wheels cannot make largely different flute shapes, preventing further improvement of the end-mills. Although no research result on how the flute geometry affects the end-mill cutting attribute has come into public yet, it is now necessary to employ more complicated wheels to grind flutes with the specified parameter values but much different flute shapes. For this purpose, the 4Y1 diamond wheel is employed in this work. However, the commercial tool grinding software cannot determine the dimensions and the set-up angle for the 4Y1 wheel. To address this problem, a new mathematical model of the flute parameters in terms of the dimensions and the set-up angle of the 4Y1 wheel is formulated, thus, the 4Y1 wheel can be used in flute grinding. This work lays a foundation of using complex wheels to grind flutes with more shapes in order to improve the end-mill's cutting ability.

References

References
1.
Kaldor
,
S.
,
Rafael
,
A. M.
, and
Messinger
,
D.
,
1988
, “
On the CAD of Profiles for Cutters and Helical Flutes—Geometrical Aspects
,”
CIRP Ann.
,
37
(
1
), pp.
53
56
.10.1016/S0007-8506(07)61584-4
2.
Ehmann
,
K. F.
, and
DeVries
,
M. F.
,
1990
, “
Grinding Wheel Profile Definition for the Manufacture of Drill Flutes
,”
CIRP Ann.—Manuf. Technol.
,
39
(
1
), pp.
153
156
.10.1016/S0007-8506(07)61024-5
3.
Kang
,
S. K.
,
Ehmann
,
K. F.
, and
Lin
,
C.
,
1996
, “
A CAD Approach to Helical Groove Machining—I. Mathematical Model and Model Solution
,”
Int. J. Mach. Tools Manuf.
,
36
(
1
), pp.
141
153
.10.1016/0890-6955(95)92631-8
4.
Kang
,
S. K.
,
Ehmann
,
K. F.
, and
Lin
,
C.
,
1997
, “
A CAD Approach to Helical Groove Machining. Part II: Numerical Evaluation and Sensitivity Analysis
,”
Int. J. Mach. Tools Manuf.
,
37
(
1
), pp.
101
117
.10.1016/0890-6955(95)00039-9
5.
Ehman
,
K.
, and
Malukhin
K.
,
2012
, “
A Generalized Analytical Model of the Cutting Angles of a Biopsy Needle Tip
,”
ASME J. Manuf. Sci. Eng.
,
134
(6), p.
061001
.10.1115/1.4007712
6.
Hsieh
,
J.
,
2006
, “
Mathematical Model and Sensitivity Analysis for Helical Groove Machining
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1087
1096
.10.1016/j.ijmachtools.2005.08.012
7.
Pham
,
T. T.
, and
Ko
,
S. L.
,
2010
, “
A Manufacturing Model of an End Mill Using a Five-Axis CNC Grinding Machine
,”
Int. J. Adv. Manuf. Technol.
,
48
, pp.
461
472
.10.1007/s00170-009-2318-y
8.
Lin
,
S. W.
,
2001
, “
Study on the 2-Axis NC Machining of a Toroid-Shaped Cutter With a Constant Angle Between the Cutting Edge and the Cutter Axis
,”
J. Mater. Process. Technol.
,
115
, pp.
338
343
.10.1016/S0924-0136(01)00994-3
9.
Lin
,
S. W.
, and
Lai
,
H. Y.
,
2001
, “
A Mathematical Model for Manufacturing Ball-End Cutters Using a Two-Axis NC Machine
,”
Int. J. Adv. Manuf. Technol.
,
17
, pp.
881
888
.10.1007/s001700170099
10.
Ren
,
B. Y.
,
Tang
,
Y. Y.
, and
Chen
,
C. K.
,
2001
, “
The General Geometrical Models of the Design and 2-Axis NC Machining of a Helical End-Mill With Constant Pitch
,”
J. Mater. Process. Technol.
,
115
, pp.
265
270
.10.1016/S0924-0136(01)00825-1
11.
Chen
,
W. F.
,
Lai
,
H. Y.
, and
Chen
,
C. K.
,
2001
, “
A Precision Tool Model for Concave Cone-End Milling Cutters
,”
Int. J. Adv. Manuf. Technol.
,
18
, pp.
567
578
.10.1007/s001700170033
12.
Chen
,
W. F.
,
Lai
,
H. Y.
, and
Chen
,
C. K.
,
2002
, “
Design and NC Machining of Concave-Arc Ball-End Milling Cutters
,”
Int. J. Adv. Manuf. Technol.
,
20
, pp.
169
179
.10.1007/s001700200140
13.
Chen
,
W. F.
, and
Chen
,
W. Y.
,
2002
, “
Design and NC Machining of a Toroid-Shaped Revolving Cutter With a Concave-Arc Generator
,”
J. Mater. Process. Technol.
,
121
, pp.
217
225
.10.1016/S0924-0136(01)01256-0
14.
Chen
,
W. Y.
,
Chang
,
P. C.
,
Liaw
,
S. D.
, and
Chen
,
W. F.
,
2005
, “
A Study of Design and Manufacturing Models for Circular-Arc Ball-End Milling Cutters
,”
J. Mater. Process. Technol.
,
161
, pp.
467
477
.10.1016/j.jmatprotec.2004.07.086
15.
Vijayaraghavan
,
A.
, and
Dornfeld
,
D. A.
,
2007
, “
Automated Drill Modeling for Drilling Process Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
3
), pp.
276
282
.10.1115/1.2768091
16.
Tandon
,
P.
, and
Khan
,
M. R.
,
2009
, “
Three Dimensional Modeling and Finite Element Simulation of a Generic End Mill
,”
CAD
,
41
, pp.
106
114
10.1016/j.cad.2009.01.005.
17.
Kim
,
J. H.
,
Park
,
J. W.
, and
Ko
,
T. J.
,
2008
, “
End Mill Design and Machining via Cutting Simulation
,”
CAD
,
40
, pp.
324
333
10.1016/j.cad.2007.11.005.
18.
Chen
,
F.
, and
Bin
,
H.
,
2009
, “
A Novel CNC Grinding Method for the Rake Face of a Taper Ball-End Mill With a CBN Spherical Grinding Wheel
,”
Int. J. Adv. Manuf. Technol.
,
41
, pp.
846
857
.10.1007/s00170-008-1554-x
19.
Rababah
,
M.
, and
Chen
,
Z. C.
,
2011
, “
Five-Axis CNC Tool Grinding: Part I—Rake Face Grinding
,” Proceedings of the
ASME
2011 International Manufacturing Science and Engineering Conference,
Corvallis, OR
,
June 13–17
10.1115/MSEC2011-50014.
20.
Rababah
,
M.
, and
Chen
,
Z. C.
,
2011
, “
Five-Axis CNC Tool Grinding: Part II—Flute Surface Grinding
,”
Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference
,
Corvallis, OR
,
June 13–17
.
21.
Karpuschewski
,
B.
,
Jandecka
,
K.
, and
Mourek
,
D.
,
2011
, “
Automatic Search for Wheel Position in Flute Grinding of Cutting Tools
,”
CIRP Ann.—Manuf. Technol.
,
60
, pp.
347
350
.10.1016/j.cirp.2011.03.113
You do not currently have access to this content.